
	

Zurich University
of Applied Sciences www.zhaw.ch/engineering Study

	

	
	

Bachelor thesis (Computer Science)
Ghidrion: A Ghidra Plugin to Support
Symbolic Execution

Author

 Silvan Flum
Valentin Huber

Main supervisor

 Arno Wagner

Sub supervisor

 Gürkan Gür

Industrial partner

 Cyber-Defence (CYD) Campus Zürich, armasuisse S+T

External supervisor

 Damian Pfammatter

Date

 09.06.2023

Zürcher Fachhochschule

DECLARATION OF ORIGINALITY

Bachelor’s Thesis at the School of Engineering

By submitting this Bachelor’s thesis, the undersigned student confirms that this thesis is his/her
own work and was written without the help of a third party. (Group works: the performance of the
other group members are not considered as third party).

The student declares that all sources in the text (including Internet pages) and appendices have
been correctly disclosed. This means that there has been no plagiarism, i.e. no sections of the
Bachelor thesis have been partially or wholly taken from other texts and represented as the
student’s own work or included without being correctly referenced.

Any misconduct will be dealt with according to paragraphs 39 and 40 of the General Academic
Regulations for Bachelor’s and Master’s Degree courses at the Zurich University of Applied
Sciences (Rahmenprüfungsordnung ZHAW (RPO)) and subject to the provisions for disciplinary
action stipulated in the University regulations.

City, Date: Name Student:

Zürich, 09.06.2023 Silvan Flum

Zürich, 09.06.2023 Valentin Huber

iii

Abstract

Symbolic execution is a powerful technique for automatic analysis of and reasoning
about program behaviour, particularly in binary analysis. However, popular reverse
engineering tools such as Ghidra lack native support for symbolic execution. Exist-
ing extensions advertising symbolic execution are limited in functionality, do not
scale well enough to be employed on practical binaries and provide limited doc-
umentation. The Cyber-Defence Campus of armasuisse, as part of its vulnerability
research program, has developed a proof-of-concept tool called Morion, that enables
symbolic execution-based analysis of various vulnerability types on practical bina-
ries. Previously, it had to be configured by manually writing configuration files. This
thesis proposes Ghidrion, an open-source Ghidra plugin that leverages information
gathered from Ghidra’s analysis tools to enhance analysts’ usage of Morion. Ghid-
rion suggests calls to external functions that can be hooked and simplifies configur-
ing the setup necessary to run Morion. It further supports the analysis of Morion’s
results by visually highlighting executed instructions and providing a side-by-side
comparison of memory and register values at the beginning and end of the execu-
tion. Alongside the code, previously missing documentation on developing Ghidra
plugins is provided. This thesis further proposes future research directions, such as
improvements to Ghidra’s loader to match external functions to their libraries and
added support for interactive Python shells to run Morion’s analysis modules from
within Ghidra.

Keywords: Symbolic Execution, Ghidra, Vulnerability Research, Binary Analysis,
Software Reverse Engineering

iv

Foreword

Writing this thesis has been a great introduction to software reverse engineering
and binary analysis. The knowledge and insights gained will be foundational to our
careers, and we are grateful to have gotten this opportunity.

We would like to thank Damian Pfammatter from the Cyber-Defence Campus and
Arno Wagner from Zurich University of Applied Sciences for their support and un-
derstanding throughout the different phases of this project, Alexandra Gunz and
Frawa Vetterli for their comments on early versions of the thesis, and Gürkan Gür
for his support.

v

Contents

1 Introduction 1
1.1 Motivation and Project Background . 1
1.2 Fundamentals . 1
1.3 Example Problem . 2
1.4 Thesis Outline . 3

2 Theoretical Principles 4
2.1 Software Reverse Engineering . 4
2.2 Binary Analysis . 5

2.2.1 Static Binary Analysis . 5
2.2.2 Dynamic Binary Analysis . 5
2.2.3 Hybrid Binary Analysis . 6

2.3 Symbolic Execution . 6
2.3.1 From Concrete to Symbolic Execution 6
2.3.2 Symbolic Execution Example . 7
2.3.3 Variants of Symbolic Execution 9
2.3.4 Symbolic Execution and Taint Analysis 11

3 State of the Art 12
3.1 Introduction to Symbolic Execution Engines 12

3.1.1 angr . 12
3.1.2 Triton . 13
3.1.3 Conclusion . 14

3.2 Symbolic Execution Graphical User Interfaces 14
3.2.1 AngryGhidra . 14
3.2.2 angr Management . 16
3.2.3 Ponce . 17
3.2.4 Manticore User Interface . 18

4 Concept and Approach 21
4.1 Morion . 21

4.1.1 Workflow . 21
4.1.2 Interface . 24

4.2 Parts of the Plugin . 25
4.2.1 Creating an Init YAML File . 25
4.2.2 Analysing a Traced YAML File 25

5 Architecture and Implementation 27
5.1 Extending Ghidra . 27

5.1.1 GhidraDev . 27
5.1.2 Ghidra Scripts . 27

vi

5.1.3 Ghidra Module Projects . 28
5.1.4 Ghidra’s Program API . 29
5.1.5 Context Menus in Ghidra . 30

5.2 Architecture and Technology . 30
5.2.1 Java/Swing . 31
5.2.2 Model-View-Controller Pattern 31
5.2.3 Observer Pattern . 32
5.2.4 Graphical User Interface Design 32
5.2.5 Python Integration . 32

6 Results 33
6.1 Created Documentation . 33
6.2 Creating an Init YAML File . 33

6.2.1 Adding Hooks . 33
6.2.2 Adding Memory . 34
6.2.3 Adding Registers . 36
6.2.4 Saving and Importing Init Trace Files 36

6.3 Tracing . 38
6.4 Analysing a Trace . 38

6.4.1 Differences Between Entry and Leave States 38
6.4.2 Marking Visited Instructions . 38
6.4.3 Using Morion’s Analysis Modules 38

7 Discussion and Outlook 41
7.1 Created Documentation . 41
7.2 Improvements in the Workflow of an Analyst 41

7.2.1 Create Init YAML . 41
7.2.2 Tracing . 42
7.2.3 Analyse Traced YAML . 42

7.3 Future Work . 42
7.3.1 Hooking Functions in Sections Other Than .text 42
7.3.2 Automatic Library Detection . 42
7.3.3 Automatic Register Detection . 43
7.3.4 Further Ideas . 44

Indices 45
1 Bibliography . 45
2 List of Figures . 50
3 List of Tables . 50
4 List of Listings . 50

Appendix 51
1 Installation of AngryGhidra . 51
2 Full Example Traced YAML File . 52
3 Full Code Proposed to Load External Symbols 55
4 Registers Identified by Ghidra . 56
5 Initial Thesis Description . 61

5.1 Titel . 61
5.2 Beschreibung . 61
5.3 Voraussetzungen . 62

1

Chapter 1

Introduction

This chapter first provides the project background. It then explains the fundamen-
tals of the relationship between human-readable and machine-executable code and
gives an overview of binary analysis and symbolic execution. Third, it introduces an
example problem that is used throughout this thesis. Finally, it gives an overview of
the rest of this thesis.

1.1 Motivation and Project Background

The Cyber-Defence (CYD) Campus [1] was tasked with checking binaries of Internet
of Things (IoT) devices for vulnerabilities. As part of this research, they developed
a series of Python scripts to automatically analyse these binaries using symbolic ex-
ecution. As these scripts accumulated, they were eventually merged into a proof-of-
concept tool called Morion. Although Morion is still in its infancy, it can already be
used to examine binaries.

So far, however, using Morion has been rather cumbersome and laborious. The anal-
ysis setup had to be done by manually writing configuration files. For this reason,
the CYD Campus commissioned the authors of this thesis to create a plugin for
Ghidra [2] that simplifies the use of Morion. Ghidra is a popular reverse engineer-
ing tool with a user interface that provides a disassembler and decompiler among
many other features. Because of this, analysts often already employ it alongside Mo-
rion. Ghidra further supports the development of extensions that allow developers
to programmatically access the information obtained by Ghidra’s analysis modules.

1.2 Fundamentals

Most programmers develop computer programs using high-level languages such as
C, Java, or Python [3]. And while these high-level languages are intuitive to humans,
computers do not understand them. Computers only understand machine language,
which is just binary data, a series of zeros and ones. It is almost impossible for hu-
mans to understand machine language. Another problem is that machine language
differs from processor architecture to processor architecture. [4] As a result, a pro-
gram written in machine language for a processor with architecture X will not be
understood by a processor with a different architecture Y. To solve this problem, a
translator is needed.

Chapter 1. Introduction 2

An assembler is a program that translates assembly language into machine lan-
guage. Assembly is designed to be human-readable and consists of commands that
can each be directly translated to one machine language instruction. Although code
written in assembly is less cryptic than machine code because it uses names for dif-
ferent instructions instead of just numbers, it is still far from intuitive. In addition,
assembly language is still architecture specific. [4]

Compilers are programs that solve both problems by translating code written in a
high-level programming language into binary machine code. Programs developed
in a high-level language only need to be written once, because a compiler can usu-
ally translate the code into machine code for different architectures. [4] The files
created by the compiler containing the machine code are called binary executables,
or binaries for short [3]. These can then be executed by a computer.

To reverse these steps and go from binary to human-readable code, so-called disas-
semblers and decompilers are employed. However, interpreting the results of these
still is a hard problem. First, programs sometimes contain thousands of files, each
of which may contain hundreds of lines of code. Second, the logic of a program is
not always easy to understand. In particular, decompilers often produce code that is
not easily readable. As a result, binary analysis techniques have been developed to
allow the automatic examination of binaries. One such technique is called symbolic
execution, or "symbex" for short.

Symbolic execution allows an analyst to automatically answer complex questions
about the behaviour of a program [3] because often a lot of inputs have an equivalent
effect and can therefore be thought of as a class of inputs. The analysis then only has
to be done once for each class. Symbolic execution is a complex technique and not
easy to implement. Therefore, the binary analysis community has made efforts to
develop so-called symbolic execution engines. These engines often provide symbolic
execution capabilities for a variety of computer architectures.

1.3 Example Problem

The example code provided in Listing 1.1 is used throughout this thesis for illus-
trative purposes. The buffer allocated in line 15 is (partially) marked as symbolic,
allowing an analyst to calculate what values it needs to be set to in order to change
the result of the comparison in line 18. In the context of vulnerability research, the
buffer can be thought of as the equivalent of chunks of memory in real binaries that
can be controlled by an attacker’s input. The comparison in line 18 would then be a
control that they would like to bypass, such as a password check.

Chapter 1. Introduction 3

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 #define BUF_LENGTH 8
6

7 /*
8 * size_t strlen(const char *s);
9 */

10

11 int main(int argc, char *argv[]) {
12 char *s;
13

14 // Buffer, will be (partially) symbolised
15 s = (char *) calloc(BUF_LENGTH, sizeof(char));
16

17 // Testing strlen
18 if(strlen(s) == 2) {
19 printf("strlen('%s') == 2\n", s);
20 return EXIT_SUCCESS;
21 }
22 printf("strlen('%s') != 2\n", s);
23 return EXIT_SUCCESS;
24 }

LISTING 1.1: Example Code — strlen.c

1.4 Thesis Outline

Following the introduction, this thesis is organized into six main sections.

• Chapter 2 introduces the theoretical foundation for the rest of the thesis. It
explains what software reverse engineering and binary analysis are and why
one may want to use them. It continues with a section on symbolic execution,
its use cases, and different variants and approaches.

• Chapter 3 consists of a survey of existing symbolic execution engines and
graphical user interfaces (GUIs) for reverse engineering tools that support sym-
bolic execution.

• Chapter 4 introduces Morion, including a detailed explanation of its current
workflow and interface. This chapter further describes how Ghidrion, the
Ghidra plugin developed as part of this thesis, interacts with Morion.

• Chapter 5 deals with the technical aspects of extending Ghidra using its Ap-
plication Programming Interface (API). It further outlines the architecture im-
plemented and design principles used in the development of Ghidrion.

• Chapter 6 demonstrates the capabilities of Ghidrion, shows the achieved fea-
tures in detail, and discusses the improved interface supporting the use of Mo-
rion.

• Chapter 7 reviews the contribution of this thesis and discusses the improve-
ments made by Ghidrion. Finally, the authors discuss ideas that could further
enhance the interaction between Morion and Ghidra.

4

Chapter 2

Theoretical Principles

The sections of this chapter provide the theoretical foundation upon which the im-
plementation and results of this thesis are based. The relevant concepts and theo-
ries are introduced from top to bottom, starting with software reverse engineering,
through binary analysis, to the different variants of symbolic execution.

2.1 Software Reverse Engineering

Software Reverse Engineering (SRE) is the practice of extracting design and imple-
mentation information from a (part of a) software system [5]. It can alternatively be
described as the process of identifying the components of a software system and
their dependencies and creating a different form of representation, for example at
a higher level of abstraction [6]. There are two main categories in which software
reverse engineering is used [5].

First, software engineers use it to understand software when they need to maintain
or develop it [6]. Eilam [7] identified four scenarios, explained in detail by Cipresso
and Stamp [5], in which a software developer may use reverse engineering:

• Developing applications that use proprietary software.

• Reversing developed software into an abstract design to verify that the imple-
mentation conforms to the original design.

• Performing binary analysis to evaluate software quality and robustness.

• Recovering unavailable source code for software maintenance and develop-
ment.

Second, it has applications in software security. Antivirus developers use reverse
engineering to identify and understand viruses and malware [5]. Eilam [7] lists four
scenarios, again explained in detail by Cipresso and Stamp [5], in which reverse
engineering is used in a software security environment:

• Detecting and neutralizing viruses and malware.

• Testing cryptographic algorithms for weaknesses.

• Protecting proprietary software and digital rights with anti-reversal techniques.

Chapter 2. Theoretical Principles 5

• Testing and analyzing the security of program binaries.

The last of the above, testing and analyzing the security of program binaries, is one
application of binary analysis. In the following section, binary analysis is described
in more detail, since symbolic execution is a technique that builds on binary analysis.
And as mentioned in Section 1.2, Morion itself builds on symbolic execution.

2.2 Binary Analysis

Andriesse [3] defines binary analysis as "the science and art of analyzing the prop-
erties of binary computer programs and the machine code and data they contain".
In the context of this definition, it is important to note that binary analysis, software
reverse engineering, and disassembly are not synonymous. Although they are re-
lated, and often used together, and there is not always an agreement in the literature
about the relationship between the three terms, they are by no means the same. [3]
Software reverse engineering does not have to be at the binary level [5]. And if so, it
is only one application of binary analysis. Others include debugging, performance
analysis, software reliability, digital forensics, and security analysis. [8] Disassem-
bly, on the other hand, is usually the first step in binary analysis [3]. However, it
only transforms data, no actual analysis takes place yet.

After all, the goal of binary analysis is to find out what a binary does when exe-
cuted [3]. Since compilers may contain bugs, even the availability of source code
does not negate the necessity of binary analysis in certain contexts. Therefore, the se-
mantics of an executed binary may differ from the expected semantics of the source
code. [8] There are two complementary approaches to analyzing binaries, static anal-
ysis and dynamic analysis [9].

2.2.1 Static Binary Analysis

Static binary analysis only analyzes the machine code of a binary without executing
it [9]. The advantages are that one can analyze all the execution paths of a binary
without having to run it repeatedly. In addition, static analysis is architecture inde-
pendent. This means, for example, that an ARM binary can be analyzed on an x86
machine. These advantages come with a series of disadvantages. First, there is no
runtime information available. [3] This means that possible values and their types
have to be derived from the machine code. This is a hard task because the compila-
tion process discards much of the information present in the source code. Second, on
top of the binary itself, additional complexity such as dynamic linking or specialized
assembly instructions must also be taken into account. [8]

2.2.2 Dynamic Binary Analysis

Dynamic binary analysis executes the binary and analyzes it on the fly [3]. This is
done by adding extra analysis code to the binary [9]. Often this is done by hook-
ing, where function calls are intercepted and then corresponding hook functions are
also called. These hook functions contain the analysis code. [8] Apart from slow-
ing down the execution, the analysis code does not interfere with the execution [9].
Although this process may sound complex, dynamic analysis is simpler and more
accurate than static analysis [3], [9]. The reason for this is that, unlike static analysis,
the entire runtime state is known. The downside is that only one path is analyzed per

Chapter 2. Theoretical Principles 6

execution, and all other possible paths are unknown. So it is possible that interesting
paths will be ignored. [3]

2.2.3 Hybrid Binary Analysis

There is also a combination of these two techniques called hybrid analysis. After the
binary is statically analyzed it is executed and dynamically analyzed. This provides
advantages because the possible execution paths are known from the static analy-
sis and can be selectively traversed during the dynamic analysis. This process can
also be repeated several times if, for example, the dynamic analysis provides new
findings. [8]

2.3 Symbolic Execution

Symbolic execution, or symbex for short, is a powerful and popular software analy-
sis technique [3]. It is used in automated software testing to generate tests and in soft-
ware, security to analyze a program’s behavior [10]. Symbolic execution can auto-
matically create test inputs that explore new execution paths and thus increase code
coverage [3]. By exploring new execution paths, bugs and unintended behaviours
can be identified, which in turn can lead to the identification of exploitable vulnera-
bilities. For example, symbolic execution can verify that software never performs a
division by zero, or that it is impossible to bypass authentication. [11] And if an un-
intended behaviour is detected, it can be easily reproduced thanks to the metadata
collected during symbolic execution [10]. In conclusion, symbolic execution has its
place in software security. This section reviews the basics of symbolic execution, pro-
vides a simple example, and discusses its variations, challenges, and limitations.

2.3.1 From Concrete to Symbolic Execution

Normally, a program is executed on concrete values (stored in registers and memory
locations in the context of binaries) such as an integer 23 or a string "ghidrion" [3].
In doing so, it explores exactly one path per execution [11]. In contrast, when a pro-
gram is executed symbolically, some or all variables are symbolized, meaning they
are represented by a symbol αi. Such a symbol represents every possible value that
a variable (register or memory location in the context of binaries) can take at a time
and place. During symbolic execution of a program, the mathematical operations
performed on a symbol are recorded as logical formulas. Taken together, these sym-
bols and logical formulas are the collected metadata needed to form what is called
the symbolic state. [3]

Computing the Symbolic State

The symbolic state consists of a set of symbolic expressions, called a symbolic expres-
sion store σ, and a path constraint π. A symbolic expression ϕj is either a symbol αi
or an arithmetic combination of multiple symbolic expressions, such as ϕj = ϕk − ϕl ,
where i, j, k, l ∈ N. The symbolic state also records the mappings of variables to
symbolic expressions. The path constraint, on the other hand, is the conjunction
of all branch constraints. A branch constraint represents the relational and logical
operations performed on symbolic expressions in a single branch. [3] For example,
Listing 2.1 contains the two if statements if(len1 >= 2) and if(len2 <= 5). So, the

Chapter 2. Theoretical Principles 7

corresponding two branch constraints are ϕ1 >= 2 and ϕ2 <= 5, where both condi-
tions evaluate to true, ϕ1 maps to len1, and ϕ2 maps to len2. Consequently, the path
constraint to reach line 5 becomes ϕ1 >= 2 ∧ ϕ2 <= 5.

1 int len1 = strlen(argv[1]);
2 int len2 = strlen(argv[2]);
3 if (len1 >= 2) {
4 if (len2 <= 5) {
5 between();
6 }
7 if (len1 < 2) {
8 impossible();
9 }

10 greater();
11 }
12 less();

LISTING 2.1: Pseudocode Including a Nested if Statement

To solidify the understanding, the next section will demonstrate a symbolic execu-
tion.

2.3.2 Symbolic Execution Example

For simplicity, this example is performed using the pseudocode of Listing 2.1 and
only symbolizes the variables len1 and len2. The argument vector argv is concrete.
Note that Morion and the tools presented in the next chapter operate with binaries
instead of high-level source code. Figure 2.1 shows the evolution of the symbolic
state for each line of code.

Initially, there is no path constraint π and the symbolic expression store σ is empty.
By assigning len1, there is still no path constraint, but len1 is made symbolic and
stored as a symbolic expression ϕ1 with symbolic value α1 in the symbolic expression
store. Likewise, the mapping from len1 to ϕ1 is stored. The same happens with the
assignment of len2. It gets interesting again after the first if statement, where a new
symbolic state is created for each path and the path constraint is updated according
to the if condition. This process continues until the entire pseudocode has been run
through. After that, constraint solving can be applied to determine if a statement is
reachable.

Constraint Solving

Suppose the goal of the analyst is to call the function between() on line 5. The sym-
bolic state of between() in Figure 2.1 shows that the path constraint π := ϕ1 >=
2 ∧ ϕ2 <= 5 must be solved. In addition, the symbolic expressions ϕ1 and ϕ2 are
symbolic values (and not a combination of other symbolic expressions) and repre-
sent len1 and len2 respectively. For example, a possible solution is α1 = 2 ∧ α2 = 0.
Such a solution is called a model. [3] When the pseudocode is executed concretely,
between() is reached by the assignments len1 = 2 and len2 = 0.

This example is kept very simple and the constraints can be solved without the help
of a computer since only two if statements were encountered, each with a simple

Chapter 2. Theoretical Principles 8

int len1 = strlen(argv[1]);

π := ⊤
σ := ∅

int len2 = strlen(argv[2]);

π := ⊤
σ := {ϕ1 = α1}

len1 → ϕ1

if (len1 >= 2)

π := ⊤
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

if (len2 <= 5)

π := ϕ1 >= 2
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

between();

π := ϕ1 >= 2 ∧ ϕ2 <= 5
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

if (len1 < 2)

π := ϕ1 >= 2 ∧ ϕ2 > 5
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

impossible();

π := ϕ1 >= 2 ∧ ϕ2 > 5 ∧ ϕ1 < 2
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

greater();

π := ϕ1 >= 2 ∧ ϕ2 > 5
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

less();

π := ϕ1 < 2
σ := {ϕ1 = α1, ϕ2 = α2}

len1 → ϕ1
len2 → ϕ2

true
false

true
false

true
false

FIGURE 2.1: An Illustration Inspired by Andriesse [3] Showing the Evolution
of the Symbolic State for All Execution Paths in Listing 2.1.

Chapter 2. Theoretical Principles 9

relational condition. However, in a real-world program execution path, there are of-
ten thousands of control structures with more complex conditions traversed. Solving
these constraints is no longer feasible without the help of computers. Therefore, this
work is left to so-called satisfiability modulo theories (SMT) solvers such as Z3 [12],
also known as constraint solvers.

2.3.3 Variants of Symbolic Execution

The example above was done statically because we did not compile and run the
pseudocode. This is the traditional way of doing symbolic execution [3]. However,
symbolic execution can be done in a number of different ways. According to An-
driesse [3], the four most important dimensions of how to perform symbolic execu-
tion are:

• Static vs. dynamic

• Online (parallel) vs. offline (non-parallel)

• Symbolic state

• Path coverage

Figure 2.2 shows in which combinations the different dimensions can be used.

FIGURE 2.2: The Design Dimensions in Symbolic Execution
According to Andriesse [3]

Static Symbolic Execution (SSE)

As with binary analysis, discussed in 2.2, symbolic execution can be performed stat-
ically or dynamically. Static Symbolic Execution is the original form of symbolic exe-
cution and exhaustively explores all possible paths of a program or uses heuristics to
analyze only a subset of all paths. SSE is usually online, meaning that multiple paths
are explored in parallel. [3] It is worth noting that, for example, if an analyst is trying

Chapter 2. Theoretical Principles 10

to reach a specific location in a program, an exhaustive symbolic execution finds all
inputs that lead to that location. In addition, no inputs are reported as possible that
do not even reach that location. In other words, false negatives and false positives
are prevented. [11]

An advantage of this variant is that programs of an architecture X can be executed
symbolically on a machine with a different architecture Y. Another advantage is the
ability to analyze a single component of a program. [3] On the downside, SSE has
two significant problems. First, the number of execution paths grows exponentially
with the number of conditionals. As a result, the maintained symbolic state grows
at the same rate. [10] These effects, called path explosion [10] and state space explo-
sion [11], respectively, lead to scalability issues. Heuristics to decide which paths to
explore can help in this respect, but only to a limited extent, because determining
reasonable and efficient heuristics is a complex task in itself. Second, when the sym-
bolic execution flows to software components that are not under control, such as the
kernel or shared libraries, the behaviour of these components must be modelled. [3]
However, such modelling is not only difficult but also time-consuming since the in-
terfaces to libraries and the OS can be very extensive [10].

Dynamic Symbolic Execution (DSE)

Dynamic symbolic execution is a combination of concrete and symbolic execution.
For this reason, DSE is also called concolic ("concrete symbolic") execution. This
variant runs a program with concrete values but additionally computes the sym-
bolic state in parallel. As a result, unlike SSE, DSE can only analyze one path at a
time. After exploring a path, DSE takes the path constraint and inverts one of its
branch constraints. A constraint solver then computes new concrete values over the
changed path constraint. By running the program with these new concrete values, a
new path will be explored. [3]

The two problems with static symbolic execution are improved or even solved by
dynamic symbolic execution. First, since a concrete execution only traverses one
path at a time, DSE is usually offline. This does not prevent path explosion, since
in the end all paths still have to be traversed. However, it does prevent state space
explosion, because only the symbolic state of exactly one path needs to be computed
at a time. Therefore, DSE scales better than SSE. Second, software components that
are not under control do not have to be modelled, but can simply be executed con-
cretely. The major drawbacks are that code coverage may depend on the concrete
values chosen and that the program can only be executed on the architecture for
which it was compiled. [3]

Online vs. Offline Symbolic Execution

As mentioned above, SSE is typically online and DSE is offline. Online symbex ex-
plores multiple execution paths in parallel, while offline symbex explores only one
at a time. Since all paths must be analyzed either way, neither option can prevent
a path explosion. However, the case is different for the state space explosion. State
space explosion results directly from the parallel (online) path exploration and thus
does not occur in offline symbex. There is an advantage to the online symbex, how-
ever. Online symbex executes each program instruction only once. On the contrary,
offline symbex usually has to execute many instructions multiple times, because the
program has to be executed from the beginning for each path. [3]

Chapter 2. Theoretical Principles 11

Symbolic State

In principle, it is possible to represent each register and memory address symboli-
cally. However, this quickly leads to constraints that are difficult to solve. Therefore,
often only some parts (registers and memory locations in the context of binaries) of
a program are marked as symbolic. Consequently, the analyst has to decide which
parts to symbolize. The resulting disadvantage is that choosing different parts as
symbolic may lead to different results. [3]

Path Coverage

Classic static symbolic execution explores all possible program paths [3]. However,
this leads to a path explosion even for smaller programs with only a few thousand
lines of code [10]. So that not all paths have to be traversed, heuristics can be used.
For example, in dynamic symbolic execution snapshots of the program state can be
taken at certain locations. After a path has been explored, the next path can be started
from the location where the snapshot was taken. [3]

Conclusion

In summary, symbolic execution can be performed in many different ways. Each
has its advantages and challenges. Ultimately, an analyst chooses the appropriate
variant based on their constraints and goals. Morion allows analyzing parts of a
program symbolically and follows a hybrid approach. First, it concretely executes a
program path to record a trace containing actual program states. This trace is then
used as input for various static analyses, such as static symbolic execution. Morion
is described in more detail in Section 4.1.

2.3.4 Symbolic Execution and Taint Analysis

Taint analysis, like symbolic execution, is a software analysis technique. It allows
tracking the flow of data through a program. This is done by marking ("tainting")
selected memory data as "taint sources". All memory which has its state derived
from data in previously tainted areas is tainted as well. After the analysis is com-
pleted, an analyst can check whether any so-called "taint sink" is tainted. A sink is
typically a sensitive program location that could be misused to exploit a vulnerabil-
ity if influenced by a source, such as a call to another program or a write operation
to a security-critical file. [3]

Therefore, unlike symbolic execution, taint analysis only reveals whether a program
location can be influenced by another, but not how [3]. However, because taint analy-
sis does not require computing the direct relationship between the input and output
values of a given instruction, it scales much better than symbolic execution. Because
they are still similar, code used to perform symbolic execution can often be used to
perform taint analysis as well [13], while the reverse is not true.

12

Chapter 3

State of the Art

The previous chapter explained symbolic execution and its different variants and
challenges. This chapter focuses on the tools that enable symbolic execution: sym-
bolic execution engines. It then introduces some existing user interfaces that simplify
the use of symbolic execution engines.

3.1 Introduction to Symbolic Execution Engines

A symbolic execution engine is a piece of software that can perform symbolic exe-
cution. That is, an engine builds the symbolic state for program paths by computing
the symbolic expression store and path constraints, and by recording the mappings
of variables to symbolic expressions. [3] Developing such software is not trivial be-
cause every executed instruction and its runtime has to be modelled. For this reason,
there are many open-source symbex engines that are designed to serve as a frame-
work or library for building custom tools that leverage symbex.

This work focuses only on symbex engines that provide binary-level symbex ca-
pabilities since Morion is designed to analyze binaries. The most popular engines
that meet this requirement are angr [14], Triton [15], Manticore [16], S2E [17], May-
hem [18], and BINSEC [19]. Introducing each of these engines is beyond the scope
of this paper. However, angr and Triton will be presented in more detail, since their
corresponding Graphical User Interfaces (GUIs) can be compared to Ghidrion. In
addition, Morion is based on Triton.

3.1.1 angr

angr [14] is a binary analysis framework that was created because binary analysis
tools often do not go beyond the state of a research prototype. As a result, many
contributions to the field were wasted, and researchers often had to repeat imple-
mentation work in particular. Therefore, angr implements many modules needed
for state-of-the-art binary analysis. [14]

Architecture and Features

Shoshitaishvili et al. [14] developed angr with the goal of “systematizing the field
and encouraging the development of next-generation binary analysis techniques by
implementing, in an accessible, open, and usable way, effective techniques from cur-
rent research efforts. . . ”. To achieve this, four specific design goals were defined,

Chapter 3. State of the Art 13

namely cross-architecture support, cross-platform support, support for different anal-
ysis paradigms, and usability. [14]

angr fulfils these goals by providing strictly separated submodules that allow com-
parison and composition between different binary analysis techniques. For exam-
ple, angr achieves the first goal in its "Intermediate Representation" submodule by
supporting 32-bit and 64-bit binaries of x86, ARM, MIPS, and PowerPC computer
architectures. The second goal was met thanks to the Binary Loading submodule,
which is capable of loading Windows, Linux, and FreeBSD binaries. By implement-
ing additional submodules, angr also supports different analysis paradigms. Finally,
usability is ensured by the open source implementation, written almost entirely in
Python, and its concise API, usable from an interactive IPython shell or as a Python
module. [14]

Dynamic symbolic execution is one of the binary analysis techniques that build on
angr’s submodules and has been fully integrated from the beginning. To solve the
resulting path constraints, angr uses the Z3 [12] SMT solver by default, but the im-
plementation of other SMT solvers is easily possible. [14]

Current Limitations

Although angr advertises cross-architecture support, there are some exceptions to
be aware of when analyzing binaries from different architectures. In addition, angr
has difficulty detecting and modelling library calls from statically linked binaries.
Cheng [20] further criticizes that “there is a steep learning curve before one can use
it effectively”.

3.1.2 Triton

Originally, Triton [15] was primarily a dynamic symbolic (or concolic) execution en-
gine. Over time, however, it evolved into a more general open-source dynamic bi-
nary analysis library that simplifies creating program analysis tools and automating
reverse engineering, among other things [21]. The following section shows how Tri-
ton accomplishes this by taking a look at its architecture and features.

Architecture and Features

Triton provides components such as a symbolic execution engine, a taint analysis en-
gine, or a constraint (SMT) solver interface. It supports the x86, x86-64, ARM32, and
AArch64 instruction sets by representing their semantics through abstract syntax
trees (ASTs). [22] According to Andriesse [3], Triton is best known for its symbolic
execution engine and provides APIs for C/C++ and Python.

Triton supports both static (SSE) and dynamic (DSE) symbolic execution through its
symbolic emulation and concolic execution modes, respectively. To reduce the risk
of path explosion, parts of the symbolic state can be concretized in both modes. The
concolic execution mode is faster than the symbolic emulation mode because it only
has to compute the symbolic state and gets the concrete state through the concrete
execution itself. However, in the concolic execution mode, Triton must always run
through the program from the beginning, while the symbolic emulation mode al-
lows analysing of parts of a program. [3] Finally, Z3 [12] or Bitwuzla [23] will solve
the path constraints [22].

Chapter 3. State of the Art 14

Current Limitations

Symbolic executions with Triton run primarily offline, i.e. without parallel explo-
ration of paths. However, Triton provides a built-in snapshot mechanism so that
overlapping paths do not have to be traversed multiple times. [3]

In addition, Triton directly processes machine instructions. So for each instruction to
be executed symbolically, the effect of the instruction on the symbolic state must be
provided manually [3]. To address this issue, work is being done on TritonDSE [24],
which will add exploration capabilities to Triton.

3.1.3 Conclusion

Symbolic execution engines create the symbolic state of a program path and then
solve the path constraint using a constraint solver such as Z3. The way the symbolic
state is computed can vary greatly from engine to engine. Often, symbolic execution
engines even offer several modes, each with its strengths and weaknesses.

3.2 Symbolic Execution Graphical User Interfaces

Most symbolic execution engines provide access to their functionality through one
or more APIs. While this is very powerful, there are cases where it would be more
user-friendly if the engine’s functionality were additionally accessible via a Graph-
ical User Interface (GUI). This is specifically the case when an analyst examines a
program through the user interface of a binary analysis platform such as Ghidra [2],
IDA Pro [25], or Binary Ninja [26]. Below, some tools are introduced that have recog-
nized this problem, try to solve it, and have at least some similarities with the result
of this paper. In addition, this section presents AngryGhidra [27] in more detail us-
ing the strlen example (see Listing 1.1), so that a better impression of how these
tools work will be gained.

3.2.1 AngryGhidra

AngryGhidra [27] is an open-source extension for Ghidra that allows an analyst to
use angr for symbolic execution from Ghidra’s GUI. AngryGhidra was developed
to bring symbolic execution to Ghidra. Therefore, angr was chosen as the under-
lying symbolic execution engine because it is popular and has a well-documented
API. [28]

Features

AngryGhidra collects the parameters described below through its window in Ghidra
and then uses a fixed and predefined angr script [29]. Skliarova [30] describes the
parameters as follows:

• Auto load libs - If this option is set, angr’s loader "determines which shared
objects are needed when loading binaries" [31].

• Blank State - The optional address from which to start symbolic execution. If
no Blank State address is set, the entry state of the program is used [27].

• Find address - The desired target address when executing the binary.

Chapter 3. State of the Art 15

• Avoid addresses – Addresses that are located in branches that are of no in-
terest and are to be avoided during symbolic execution. When they are found,
angr will not continue exploring this branch. This might speed up the symbolic
execution.

• Arguments - Allows supplying a list of values as the program’s argument vector
(argv).

• Hook options - Allows an analyst to intercept specified instructions and enter
certain values into the registers.

• Store symbolic vector - Allows to make values at certain memory addresses
symbolic. If the symbolic execution is successful, the plugin outputs the gen-
erated solution vector.

• Write to memory - Allows to set specific values at certain memory addresses.

• Registers - Allows to initialize registers with specific values.

Limitations

As mentioned above, AngryGhidra uses a fixed and predefined angr script that takes
parameters from the UI [29]. Consequently, the extension provides only a subset of
angr’s symbolic execution capabilities [32].

In addition, usage documentation is essentially non-existent [32]. A Russian arti-
cle [30] written by the developer of AngryGhidra, which does not seem to be refer-
enced anywhere, appears to be the only source where all the extension’s functional-
ities are explained. Otherwise, the source code of AngryGhidra and the documenta-
tion of angr have to be used to discover the meaning of the extension’s parameters.

Finally, AngryGhidra only supports the x86 family of architectures. This is unfortu-
nate, as both angr and Ghidra support a variety of binary formats. [32]

Solving a Simple Example

To demonstrate AngryGhidra, Listing 1.1 was compiled using the GNU Compiler
Collection (GCC). The resulting binary is imported into a Ghidra project, and then
a symbolic execution is performed using AngryGhidra. The corresponding instal-
lation instructions can be found in Appendix 1. As a reminder, the main method of
strlen.c is shown in Listing 3.1. Note that BUF_LENGTH is set to 8. The goal of the
symbolic execution is to make the length of s equal to two so that lines 19 and 20 are
reached.

After importing the binary to Ghidra and opening its CodeBrowser, the first task is
to identify the main function and set the first instruction after the call to calloc as
the Blank State address, as seen in Figure 3.1. In this case, the Blank State is set to
address 0x00400588.

As discussed, the goal is that s has a length of two. Therefore, the call of the first
printf will be set as the Find address. Additionally, the call of the second printf

will be set as an Avoid address. AngryGhidra colours the Find Address green and
all the Avoid Addresses red as shown in Figure 3.2.

Chapter 3. State of the Art 16

11 int main(int argc, char *argv[]) {
12 char *s;
13

14 // Buffer, will be (partially) symbolised
15 s = (char *) calloc(BUF_LENGTH, sizeof(char));
16

17 // Testing strlen
18 if(strlen(s) == 2) {
19 printf("strlen('%s') == 2\n", s);
20 return EXIT_SUCCESS;
21 }
22 printf("strlen('%s') != 2\n", s);
23 return EXIT_SUCCESS;
24 }

LISTING 3.1: Main Method of strlen.c

When opening AngryGhidra’s panel through Window→ AngryGhidraPlugin, the sym-
bolic execution can be started by clicking Run. Right now, no solution will be found.
First, the allocated buffer has to be made symbolic, because the symbolic state will
be empty otherwise. This example assumes that the buffer of length 8 is allocated
at address 0x00412190 to 0x00412197. Therefore, the value 0x00412190 must be addi-
tionally stored in register r0, because in ARM architectures return values are stored
in register r0. Otherwise, angr would not know where this buffer would be allocated.

The next step is to symbolize the buffer. The analyst symbolizes the entire buffer
by storing a symbolic vector of length eight at address 0x00412190 as shown in Fig-
ure 3.3. A click on Run will execute the instructions symbolically. After a few seconds,
AngryGhidra will report a solution:

0x412190 = b'\x01\x01\x00\x00\x00\x00\x00\x00'

AngryGhidra reports that in a concrete execution, addresses 0x00412190 and
0x00412191 can be set to 0x01 and all the other addresses can be set to 0x00 to reach
lines 19 and 20 in Listing 3.1. This is only one of many possible models (solutions).
Because strings are null-terminated in C programming, the effective length of the
string will be two. As a result, lines 19 and 20 will be reached in a concrete execu-
tion.

3.2.2 angr Management

angr Management [33] is the official GUI for angr and is currently being rapidly ex-
panded by the community. It allows an analyst to easily load a binary and provides
several views to inspect it.

Features

The main features in angr Management are the following views:

• Functions: Lists all the functions found in the binary and some related infor-
mation such as the address of the entry instruction.

• Disassembly: Translates the binary into assembly code and displays a function
graph.

Chapter 3. State of the Art 17

FIGURE 3.1: Set the First Instruction After the Call to calloc as
Blank State Address Using AngryGhidra

• Hex: Displays the contents of the binary in hexadecimal and ASCII.

• Pseudocode: Shows decompiled pseudocode, similar to the C programming
language.

• Symbolic Execution: Allows to symbolically execute the binary (or parts of it).

In addition, angr Management provides an integrated IPython interactive shell that
allows an analyst to use the full power of angr interactively. It is worth mentioning
that angr Management officially supports the development of plugins.

Limitations

The official angr documentation itself states that the documentation for angr Man-
agement, as well as the API for developing plugins, are highly in-flux [34]. However,
the documentation for angr itself is more detailed and at least helps to understand
the GUI of angr Management.

3.2.3 Ponce

Ponce [35] is a plugin for the popular binary analysis tool IDA Pro [25]. Ponce is
designed to eliminate the need for end users to implement specific use cases and ad-
vertises that symbolic execution is just one click away. It runs natively on Windows,
Linux and OSX and supports the x86, x86-64, Arm, and Arm64 computer architectures.
[36]

Chapter 3. State of the Art 18

FIGURE 3.2: The Marked Find and Avoid Addresses Using AngryGhidra

Capabilities

Ponce provides taint analysis and symbolic execution capabilities at the binary level.
It relies on Triton to perform symbolic execution. Ponce’s documentation lists four
different use cases. First, it can aid in exploit development by allowing developers
to easily see which memory areas and registers can be controlled. Second, during
a malware analysis, Ponce can symbolize known commands (specific instructions
that malware can execute) and thus understand the conditions under which these
commands are executed. Third, it can be helpful in protocol reversal by identify-
ing magic numbers or headers needed. Finally, Ponce simplifies reverse engineering
binaries when solving CTFs. [36]

Limitations

One limitation is caused by the use of Triton, which is based on concolic execution.
For example, if a symbolic value is used as an index to access non-symbolic data,
Triton loses symbolic tracking. Consequently, the originally symbolic value will no
longer be symbolic after the data is accessed. [36] Using Triton further means that
Ponce is unable to perform static analysis [29].

Another limitation of Ponce is due to IDA, which only offers a very limited variant as
freeware, appropriately named IDA Free. Even the version for reverse engineering
hobbyists currently costs several hundred US dollars per year. [25] As a result, Ponce
is not easily accessible and was not tested by the authors of this paper.

3.2.4 Manticore User Interface

Manticore User Interface (MUI) [37] is a graphical user interface plugin for Ghidra
and Binary Ninja that uses the Manticore symbolic execution engine [16]. Manticore
is open source and supports dynamic symbolic execution for programs in both tra-
ditional and exotic execution environments [38]. In the following sections, the GUI
component is referred to as MUI and the symbolic execution engine is referred to as
Manticore.

Chapter 3. State of the Art 19

FIGURE 3.3: The Filled AngryGhidra Panel Reports a Solution
After Symbolic Execution

Capabilities

The heart of Manticore is its Core Engine, which “implements a generic platform-
agnostic symbolic execution engine that makes few assumptions about the under-
lying execution model” [38]. This gives Manticore the ability to parse not only bi-
naries from traditional computing architectures such as x86, x86-64, or ARMv7 but
also Ethereum [39] smart contracts and WebAssembly [40] modules [41]. Initially,
Manticore provided only a command-line interface (CLI) and a Python API to ac-
cess its features and perform custom analysis [41]. To improve its usability, MUI was
developed, a user interface for Binary Ninja and Ghidra [37].

MUI has features like setting find and avoid addresses, similar to AngryGhidra(see
Section 3.2.1). Further exists both a State List and a Graph View widget. The State
List shows all the symbolic states Manticore has explored and how it arrived at a
possible solution. The Graph View displays a tree structure of all symbolic states.
In addition, it is possible to write custom hooks in Python to take full advantage of
Manticore. MUI even supports basic analysis of Ethereum Smart Contracts. [42]

Chapter 3. State of the Art 20

Limitations

MUI and Manticore have some limitations. First, Manticore only supports Linux ELF
binaries. Windows and MacOS binaries are not supported. Second, the development
pace of Manticore and MUI seems to have stalled. [41] Finally, the documentation
for Manticore is poor. Many chapters and sections, for example on Ethereum smart
contracts, are empty. [43]

21

Chapter 4

Concept and Approach

This chapter gives an overview of Morion, how it works, what it offers and how
Ghidrion, the Ghidra plugin proposed in this thesis, interacts with it. Furthermore,
this chapter presents the broad conceptual structure of Ghidrion with a description
of what each part does.

4.1 Morion

Pfammatter [44] describes Morion as a tool developed by the Cyber-Defence (CYD)
Campus [1] based on Triton (see Section 3.1.2) to help an analyst understand the
capabilities of a bug. It is currently limited to ARMv7 binaries. Specifically, it is de-
signed to be applied to real binaries using a two-step approach. First, a user prepares
and records a trace of a concrete execution of the binary. In a second step, this trace
can then be analysed using Morion’s vulnerability analysis tools.

4.1.1 Workflow

When analysing a binary with Morion, an analyst would typically go through three
steps, possibly several times. Figure 4.1 provides an overview of these steps, which
are explained in the following paragraphs.

Prepare Trace
• Hook functions
• Set registers
• Set memory

Trace Execution
• Navigate to start
• Define stop

addresses
• Start Morion

tracing script

Analyze Trace
• Use Morion tools
• Check registers
• Check memory
• Check instructions

YA
M

L
In

it

YA
M

L
Tr

ac
ed

Iterate

FIGURE 4.1: Workflow When Analyzing a Binary Using Morion.

Chapter 4. Concept and Approach 22

Preparing the Trace

First, an analyst would prepare the trace. To do this, they may wish to exclude from
the trace certain sections of code that either do not affect the potential vulnerability
being examined, are too complex and would make the analysis unfeasible due to
their complexity, or contain system calls that cannot be modelled using Triton. This
can be achieved by using hooks.

A hook consists of an entry address, a leave address, a mode and a replacement
implementation. For example, an analyst can hook calls to external libraries (such
as libc). To do this, they would add a hook where the entry address is that of the
jump instruction and the leave address is that of the next instruction after the jump.
But the hook system is not limited to this: If the analyst wishes to skip a number
of instructions in the analysed code because they are not concerned about the side
effects introduced, they can add a hook where the entry and leave addresses are
further apart.

Hooks can be of three types: model, taint and skip:

• model sections require a substitute implementation within Morion. This will be
executed in place of the original instructions whenever the hook is reached.
By marking a hook as model, parts of the program that add a lot of unnec-
essary complexity can be greatly simplified. Examples include calls to read a
file, memory manipulation functions such as memcpy, transformation functions
such as strtol, or debugging code such as puts calls.

• Using hooks of type taint allows a taint analysis to be performed on the sec-
tion of code being analysed using Triton’s symbex engine. This reduces the
complexity of the resulting path constraint SMT formula by marking the re-
sults of the hooked function as symbolic but loses the connection between
function arguments and return value(s).

• Marking hooks as skip causes the engine to skip the hooked instructions. This
can be used to ignore sections of code that do not affect the result.

Besides hooks, the analyst may add certain values in registers or at certain memory
addresses, which Morion sets just before the tracing starts.

Trace

After preparing the trace, the analyst would start the GNU Debugger (GDB) and
manipulate the program to the state they would like it to be in at the start of the
trace. To do this, the full functionality of GDB can be used, including breakpoints
and both memory and register manipulation.

Morion provides a GDB script that performs the actual tracing. The analyst starts this
script and provides it with a list of addresses (breakpoints) that, when reached, stop
the trace. These may include the intended target address along with addresses in
the binary’s error handling code that would stop the trace in case of an error during
the trace setup. The script then steps through the program, recording the executed
instructions along with additional information such as the instruction address and
parameter and result values. When a hook entry address is reached, the tracing script
executes the substitute implementation (if the hook is of mode model or taint) and

Chapter 4. Concept and Approach 23

continues at the leave address of the hook. It also keeps track of all memory and
registers accessed during the trace. For each, the script stores both the value at the
start of the trace and the value at the end of the trace.

Analysing the Trace

Using the information gathered during tracing, the analyst can now begin to exam-
ine the section of code in question for vulnerabilities. Before performing any analy-
sis, they mark as symbolic registers and memory entries in the entry state that can be
influenced by the attacker. Morion provides modules to perform different types of
analysis. These modules initialise Triton with the entry memory and register values
recorded during tracing. They then execute the recorded instructions symbolically,
including model and taint hooks. After executing all instructions, they mark as sym-
bolic all leave memory entries and registers that are influenced by a symbolic entry
memory entry or register. The modules also provide an interactive Python shell at
each finding, allowing the analyst to perform further manual analysis to verify that
the vulnerability is exploitable.

Morion currently provides five analysis modules:

• Backward Slicing: This module symbolically executes a program trace for back-
ward slicing. The analysis identifies backward slices for a specified register
or memory address. Program slicing allows an analyst to reason about what
parts of the program influenced the values of a set of variables at a specified
point [45].

• Control Hijacks: This module symbolically executes a program trace to iden-
tify potential control flow hijacks. A control flow hijack corresponds to regis-
ters that affect the control flow, such as the program counter (PC) becoming
(partially) symbolic.

• Memory Hijacks: This module symbolically executes a program trace to iden-
tify potential memory hijacks. A memory hijack corresponds to the target of a
memory read or write operation becoming (partially) symbolic.

• Branches: This module symbolically executes a program trace for branch anal-
ysis. The analysis identifies multi-way branches along the trace and outputs
concrete values of how to reach the branch not taken. A given branch is only
evaluated once.

• Paths: This module symbolically executes a program trace for path analysis.
The analysis identifies unique paths along the trace and outputs concrete val-
ues of how to reach these paths. A path consists of a sequence of multi-way
branches. The last multi-way branch in each output path is not taken in the
concrete execution of the trace.

Finally, the analyst may wish to manually analyse the executed instructions, com-
pare the entry and leave states and check for any changes that might indicate a vul-
nerability or check for any unexpected leave memory entries or registers marked as
symbolic.

Chapter 4. Concept and Approach 24

4.1.2 Interface

Morion stores its intermediate state in YAML files. This allows Ghidrion to interface
with Morion without the need to interact with Python code directly from its Java
environment. These files typically accumulate information with each step during a
typical analysis according to the typical workflow described in Section 4.1.1. And
because, strictly speaking, excess information is not illegal, the output of each step
is a legal input to run the same step again. In general, one can distinguish between
the information stored in the files before and after tracing. In the rest of this thesis,
these will be referred to as Init YAML and Traced YAML files (see also Figure 4.1),
with the latter containing a superset of the former’s information.

Init YAML Files

A typical Init YAML file for the example introduced in Section 1.3 (specifically, in
Listing 1.1) might look like what can be found in Listing 4.1. It describes three hooks:
The printf calls are skipped, and the strlen call is replaced by the substitution im-
plementation in Morion. The file does not describe any entry register values but sets
the memory values for addresses 0x00412190 through 0x00412197 to the ASCII rep-
resentation of the letters A to G including the trailing NULL. Three of these entries are
already marked as symbolic, as indicated by the $$.

1 hooks:
2 libc:
3 printf:
4 - entry: '0x4005b4'
5 leave: '0x4005b8'
6 mode: skip
7 - entry: '0x4005d0'
8 leave: '0x4005d4'
9 mode: skip

10 strlen:
11 - entry: '0x400594'
12 leave: '0x400598'
13 mode: model
14 states:
15 entry:
16 mems:
17 '0x00412190': ['0x41']
18 '0x00412191': ['0x42', $$]
19 '0x00412192': ['0x43', $$]
20 '0x00412193': ['0x44']
21 '0x00412194': ['0x45', $$]
22 '0x00412195': ['0x46']
23 '0x00412196': ['0x47']
24 '0x00412197': ['0x00']

LISTING 4.1: Example Init YAML File

Traced YAML Files

After a traced execution, the Traced YAML file now has additional entries. The com-
plete Example Traced YAML file can be found in Appendix 2. First, it contains a list
of all executed instructions (see Listing 4.2). These entries consist of the instruction
address, the instruction in binary and human-readable assembly, and a comment.

Chapter 4. Concept and Approach 25

Line 33 shows that the hook set in line 10 of the Init YAML file (see Listing 4.1) was
correctly recognised and executed.

17 instructions:
18 - - '0x00400588'
19 - 00 30 a0 e1
20 - 'mov r3, r0'
21 - 'L15: `s = (char *) calloc(BUF_LENGTH, sizeof(char));`'
22 - - '0x0040058c'
23 - 08 30 0b e5
24 - 'str r3, [fp, #-8]'
25 - 'L15: `s = (char *) calloc(BUF_LENGTH, sizeof(char));`'
26 - - '0x00400590'
27 - 08 00 1b e5
28 - 'ldr r0, [fp, #-8]'
29 - 'L18: `if(strlen(s) == 2) {`'
30 - - '0x00400594'
31 - 59 ff ef ea
32 - 'b #-0x400294'
33 - '// Hook: libc:strlen (on=entry, mode=model)'
34 - - '0x00000300'
35 - 07 00 a0 e3
36 - 'mov r0, #0x7'
37 - '// Hook: libc:strlen (on=leave, mode=model)'

LISTING 4.2: Excerpt From the Instructions of the Example Traced YAML File

It further contains an extended entry state with all accessed values in addition to
those provided in the Init YAM fileL. For each entry in the entry state, the value at
the end of the tracing is also recorded. Excerpts of this can be found in Listing 4.3.

4.2 Parts of the Plugin

Based on the available interface, Ghidrion can be divided into two parts: The first
supports an analyst in creating an Init YAML, while the second helps in analysing
the Traced YAML.

4.2.1 Creating an Init YAML File

Here, the plugin supports the analyst by using Ghidra’s analysis to find all hookable
function calls and present the user with a list from which to choose. In addition, the
analyst can add memory entries manually, using convenience features such as split-
ting multi-byte data and repeating a byte of data across multiple addresses. Regis-
ters can be added either manually or by selecting from all available registers. Both
registers and memory entries can be marked as symbolic.

This part of the plugin is also able to import existing Init YAML files to continue
working on them and export them to files on disk that can then be fed to Morion.

4.2.2 Analysing a Traced YAML File

The second part of the plugin supports the analysis of the information collected
during a trace in three ways:

Chapter 4. Concept and Approach 26

107 states:
108 entry:
109 addr: '0x00400588'
110 mems:
111 '0x004005e8': ['0x10']
112 '0x004005e9': ['0x01']
113 '0x004005ea': ['0x00']
114 '0x004005eb': ['0x00']
115 '0x00412190': ['0x41']
116 '0x00412191': ['0x42', $$]
134 '0xbefffb77': ['0xb6']
135 regs:
136 r0: ['0x00412190']
137 r1: ['0x00412190']
138 r11: ['0xbefffb74']
139 r3: ['0x00412198']
140 sp: ['0xbefffb60']
141 z: ['0x00000000']
142 leave:
143 addr: '0xb6eed5a0'
144 mems:
145 '0x004005e8': ['0x10']
146 '0x004005e9': ['0x01']
147 '0x004005ea': ['0x00']
148 '0x004005eb': ['0x00']
149 '0x00412190': ['0x41']
150 '0x00412191': ['0x42']
168 '0xbefffb77': ['0xb6']
169 regs:
170 r0: ['0x00000000']
171 r1: ['0x00000000']
172 r11: ['0x00000000']
173 r3: ['0x00000000']
174 sp: ['0xbefffb78']
175 z: ['0x00000001']

LISTING 4.3: Excerpt From the Entry and Leave State of the Example Traced
YAML File. No Leave Entries Are Marked as Symbolic Since No Analysis Was

Performed Yet.

1. It marks the executed instructions in Ghidra’s standard Listing and Decompile
windows, thus allowing an analyst to quickly check which instructions were
executed during the trace.

2. It provides a way for an analyst to quickly and easily gain insight into what
data and registers have changed during execution. It marks which of these
are only present in either the entry or leave state, which have previously been
marked as symbolic by the analyst in the entry state, and which of the leave
state entries are influenced by the symbolic entry state entries.

3. It launches Morion’s analysis modules using the selected Traced YAML. The
interactive shell provided during the execution has access to the information
about the binary from Ghidra’s analysis.

27

Chapter 5

Architecture and Implementation

The first part of this chapter provides documentation of how Ghidra can be ex-
tended, especially about plugins that interact with a loaded binary. The second part
explains the technology used and the architecture implemented in Ghidrion.

5.1 Extending Ghidra

Although Ghidra offers countless features, there are many problems for which Ghidra
does not provide a built-in solution. Therefore, Ghidra supports third-party devel-
opment of scripts and feature-rich extensions.

5.1.1 GhidraDev

The most obvious way to analyze binaries in ways not supported by Ghidra is to
write and edit Ghidra Scripts using Ghidra’s Script Manager window. It provides a
basic internal scripting environment where existing scripts can be edited and new
scripts can be created. However, since this scripting environment does not support
auto-completion or debugging, the development experience is limited. Fortunately,
Ghidra offers a plugin for the popular Eclipse IDE called GhidraDev that greatly
simplifies development.

GhidraDev not only allows a developer to write Ghidra Scripts but also Ghidra
Modules. Both allow to extend Ghidra with custom functionality and are briefly
described in the next two sections.

5.1.2 Ghidra Scripts

Ghidra scripts can be written in both Java and Python 2. Python 3 is not supported
because Ghidra is developed in Java and Ghidra’s Java objects are accessed via
Jython [46] which only supports Python 2.7. A script written in Java is a complete
class extending the abstract GhidraScript [47] class which requires the implemen-
tation of the run() method. Finally, when a script is executed, the run() method is
called. [48]

Ghidra constructs can be accessed from Ghidra scripts via the so-called Flat Appli-
cation Programming Interface (Flat API) [49]. The Flat API is a single class called
FlatProgramAPI that exposes many levels of the hierarchical Program [50] API. [48]
Ghidrion uses the Flat API only in its TraceColorizerScript class by extending
GhidraScript, which in turn extends FlatProgramAPI. Otherwise, the Program API

Chapter 5. Architecture and Implementation 28

is used to interact with Ghidra objects. The key objects of the Program API used by
Ghidrion are described in Section 5.1.4.

5.1.3 Ghidra Module Projects

GhidraDev not only allows the creation of Ghidra Scripts but also Ghidra Module
Projects. A Ghidra Module Project is a Java project with associated help files and
documentation. Moreover, it allows controlling how to interact with other Ghidra
modules. [48] When creating a new module, Ghidra asks the developer which mod-
ule templates to use. Currently, there are six module templates available:

• Analyzer: Provides a skeleton class extending AbstractAnalyzer [51]. Analyz-
ers allow extending Ghidra’s analysis on binaries.

• Plugin: Provides a skeleton class extending ProgramPlugin [52]. Plugins allow
to access Ghidra’s GUI and the event notification systems [53]. A plugin is a
bundle of features and capabilities that can be enabled and disabled in Ghidra.
Plugins expose their features and capabilities via a user interface (UI), so-called
service APIs (see 5.1.3), or PluginEvents [54] and follow a life cycle. Imple-
menting a ComponentProvider [55] allows providing a UI. [56] This template
was chosen for Ghidrion development because it allows access to the Program
API and the development of a UI.

• Loader: Provides a skeleton class extending AbstractProgramWrapperLoader [57].
Loaders allow supporting new binary code formats [53].

• FileSystem: Provides a skeleton class implementing GFileSystem [58]. FileSys-
tems allow supporting more archive files such as apk, ZIP, or tar [53].

• Exporter: Provides a skeleton class extending Exporter [59]. Exporters allow to
export parts of a program [53].

• Processor: These modules handle the disassembly operations in Ghidra. It is
the only template that does not provide a skeleton class. [48]

Finally, GhidraDev allows exporting a module as a ZIP file with just a few clicks.
This file can then be easily distributed and installed in Ghidra.

Ghidra Services

A plugin can expose its capabilities in the form of one or more services. Other
plugins can then acquire these services. For example, Ghidrion acquires the
ColorizingService to colour a Morion trace in Ghidra’s Listing window. On the
other hand, the DecompilerHighlightService is used to highlight the Morion trace
in Ghidra’s Decompile window.

Discovering what services are available is rather difficult since there does not
seem to be a central list of all available services. While some are listed in the
ghidra.app.services package, the authors found that the easiest way to discover
them is by manually searching for other plugins and checking what services they
use or provide.

Chapter 5. Architecture and Implementation 29

1 public static Set<HookableFunction> getHookableFunctions(Program program)
{↪→

2 FunctionManager functionManager = program.getFunctionManager();
3 ReferenceManager referenceManager = program.getReferenceManager();
4 Memory memory = program.getMemory();
5 Set<HookableFunction> res = new HashSet<>();
6

7 for (Function externalFunction : functionManager.getExternalFunctions())
8 for (Address thunkAddress :

externalFunction.getFunctionThunkAddresses(true))↪→

9 for (Reference reference :
referenceManager.getReferencesTo(thunkAddress))↪→

10 if (!reference.isEntryPointReference()) {
11 String name = externalFunction.getName();
12 Address entryAddress = reference.getFromAddress();
13 Instruction instruction =

program.getListing().getInstructionAfter(entryAddress);↪→

14 if (instruction == null) // if there is no next instruction,
hooking doesn't work↪→

15 continue;
16 Address leaveAddress = instruction.getAddress();
17 res.add(new HookableFunction(name, entryAddress, leaveAddress,

memory));↪→

18 }
19 return res;
20 }

LISTING 5.1: Method Gathering Calls to External Functions in a Program That
Can Be Hooked in Ghidrion

5.1.4 Ghidra’s Program API

Ghidrion makes heavy use of Ghidra’s Application Programming Interface (API) [60].
Unfortunately, apart from the sparse JavaDoc, there does not seem to be an overview
of the API’s structure. This chapter presents some classes that the authors of this pa-
per found useful in the development of Ghidrion along with an overview of the
functionality they provide to aid in future program plugin development.

Since Ghidrion is a ProgramPlugin [52], the most interesting functionality is provided
by Program [50] objects. These can be obtained by overwriting a function in the main
class that is called by Ghidra every time a program is opened or activated [52]. They
contain getter functions that return so-called managers which then provide func-
tionality regarding a certain part of the loaded binary. Listing 5.1 shows how some
of those managers are used to gather all external function calls in a certain Program.
The following sections present a selection of these managers and explain how they
are used in Ghidrion.

FunctionManager

The FunctionManager [61] object lies at the core of the external function hooking
capability of Ghidrion (see Section 4.1.1). To display a list of all external functions
along with all their references in the code, Ghidrion first obtains a list of all exter-
nal functions using the FunctionManager including their names and addresses in the
Procedure Linking Table (.plt). Then, it generates a list of the addresses of thunks
to those external functions to get the references in the Global Offset Table (.got).

Chapter 5. Architecture and Implementation 30

Finally, using the ReferenceManager, all references to either of the above are found.
These typically are in the text section (.text) of the executable.

ReferenceManager

The ReferenceManager [62] object provides all references that Ghidra detects (such as
function calls or constants), thus allowing plugins using it to leverage the referenc-
ing engine of Ghidra. It works on an address basis, which requires back-and-forth
translating between Address and Function objects at times, which can be done using
the FunctionManager.

Memory

The Memory [63] object contains information about the memory contents and layout.
Ghidrion only uses it to map addresses of function references to their ELF sections
to allow easier filtering while adding function hooks.

ProgramContext

The ProgramContext [64] object allows interfacing with the registers a machine ca-
pable to execute the loaded binary must have. It can be used to get a list of all such
registers, including their attributes such as their size and type.

5.1.5 Context Menus in Ghidra

To create a context menu in the main Ghidra window such as the program List-
ing, a developer can register a context action during the plugin setup. These con-
tain 4 methods that can be overridden to define what should happen if they are
selected and in which contexts and on which lines they should be displayed and en-
abled. Ghidrion uses this to allow an analyst to hook functions directly from within
Ghidra’s Listing window with a right click. To achieve this, it registers three types of
ListingContextAction [65]:

1. It allows an analyst to add a hook using all possible hooking modes. This con-
text action is only available if the selected line contains a reference to an exter-
nal function and said function is not yet added. The code to create this type of
ListingContextAction can be seen in Listing 5.2.

2. If a hook has previously been added using either the context menu or Ghid-
rion’s main window, it allows the analyst to change the mode of the hook.

3. It allows the analyst to delete the hook associated with a certain line, should it
exist.

5.2 Architecture and Technology

This section discusses the technology Ghidrion is built on and architectural princi-
ples followed during the implementation.

Chapter 5. Architecture and Implementation 31

1 private ListingContextAction getAddHookAction(Mode mode, Program program)
{↪→

2 return new ListingContextAction(LISTENING_CONTEXT_ACTION_NAME,
getName()) {↪→

3 @Override
4 protected void actionPerformed(ListingActionContext context) {
5 Address entryAddress = context.getLocation().getAddress();
6 Address leaveAddress = program.getListing() ⌋

.getInstructionAfter(entryAddress).getAddress();↪→

7 Optional<Function> function = getFunctionAtSelectedLocation(context,
program);↪→

8 String name = function.get().getName(); // checks are done in
isValidContext↪→

9 String libraryName = JOptionPane.showInputDialog("Input library
name", "libc");↪→

10 traceFile.getHooks().add(new Hook(libraryName, name, entryAddress,
leaveAddress, mode));↪→

11 }
12

13 @Override
14 protected boolean isValidContext(ListingActionContext context) {
15 Address address = context.getLocation().getAddress();
16 Optional<Function> function = getFunctionAtSelectedLocation(context,

plugin.getCurrentProgram());↪→

17 return function.isPresent()
18 && function.get().isExternal()
19 && traceFile
20 .getHooks()
21 .stream()
22 .filter(hook -> hook.getEntryAddress().equals(address))
23 .count() == 0;
24 }
25 };
26 }

LISTING 5.2: Method Creating the Context Action To Add Hooks
From Ghidra’s Listing Window

5.2.1 Java/Swing

Ghidra is written in Java and its API is natively accessible using Java [60]. Ghidrion
is also written in Java to make interaction with the API as seamless as possible. For
the graphical user interface (GUI), Ghidra uses Java Swing and provides a way for a
plugin to create a window by extending ComponentProvider [55]. These then behave
like any other Ghidra window and can be filled with any combination of Swing
elements.

5.2.2 Model-View-Controller Pattern

Ghidrion is written using the Model-View-Controller (MVC) pattern. According to
Burbeck: “In the MVC paradigm the user input, the modelling of the external world,
and the visual feedback to the user are explicitly separated and handled by three
types of object, each specialized for its task.” [66] This enables separation of logic
and UI code that minimises object dependencies. Swing itself is also rooted in the
MVC design [67].

Chapter 5. Architecture and Implementation 32

5.2.3 Observer Pattern

In Ghidrion, the observer pattern (as described by Gamma et. al [68]) allows differ-
ent types of interfaces (such as the main GUI, the context menu, and the colouring of
visited instructions) to work with the same information, thus allowing synchronisa-
tion between their states. For example, the context menu relies on the same object to
manipulate hooks as the main GUI, without the need for direct references between
interface objects. It further allows objects to subscribe to changes in data and per-
form actions based on the new data. This is used to update the GUI whenever a user
changes something in the internal representation of either YAML file using any of
the available interactions, and more generally to store whatever information can be
entered by the user that has an immediate effect without further interaction. Exam-
ples include the colour chosen to highlight executed instructions and the cascading
updates in the hook filters.

5.2.4 Graphical User Interface Design

For the GUI itself, the authors chose to rely heavily on Swing’s JTabbedPane, as it
allows the user to see all the necessary information even on small screens. Certain
parts of the plugin required an intimate understanding of Swing’s internals, such
as the custom table renderer used in the diff view, which is needed to highlight ta-
ble entries by colour. Ghidrion also contains certain custom components made from
standard Swing components, such as the filter elements used to filter the hooks to
be added.

5.2.5 Python Integration

In Section 4.2.2 it was stated that the plugin starts an interactive Python shell that can
access both Morion’s and Ghidra’s analysis modules. As mentioned in Section 5.1.2,
Morion was written in Python 3 while Ghidra only supports Python 2.7. Therefore,
solutions were sought to overcome this problem. Two possible solutions came in the
form of third-party plugins, Ghidrathon [69] and Pyhidra [70].

Ghidrathon “adds Python 3 scripting capabilities to Ghidra” [69]. It fully replaces the
existing Python 2 support and is intended to make it easier to use existing Python
3 tools in Ghidra. In addition, the developers of Ghidrathon mention that they put
a lot of emphasis on enabling third-party modules. [69] Pyhidra on the other hand
“provides direct access to the Ghidra API” [70] through CPython 3. Among other
things, it features an interpreter window that supports Python 3 [70].

However, the authors found that the Morion analysis modules are not fully func-
tional with either Ghidrathon or Pyhidra. Although the import of Morion works,
both plugins throw errors when calling Python’s input() function. However, the
proper working of input() is necessary to fully use the Morion analysis modules.

33

Chapter 6

Results

This chapter presents the contributions of this thesis, starting with the created doc-
umentation and how this supports future plugin development. Second, it presents
the functionality achieved in Ghidrion and how it helps an analyst to prepare an Init
YAML file. Third, this chapter gives an overview of how a Traced YAML file can be
analysed and finishes with what could not be implemented.

6.1 Created Documentation

The contribution of this thesis when it comes to documentation is twofold: First,
Section 5.1 provides a missing overview of and introduction to different ways of
extending Ghidra, including the used tooling and starting points for future devel-
opment. Second, it provides a well-designed and well-documented example of a
ProgramPlugin, which is going to be helpful to developers creating similar plugins.

6.2 Creating an Init YAML File

As mentioned in the concept presented in Section 4.2.1, the first part, located in the
first tab of Ghidrion, supports an analyst in creating an Init YAML file in three ways:
It allows them to add hooks for external functions, memory entries, and registers.
This section describes in detail how these objectives were achieved.

6.2.1 Adding Hooks

The first sub-tab allows an analyst to add function hooks to the Init YAML file (see
Figure 6.1). The library of the function must currently be entered manually. Using a
set of cascading filters, the analyst can then filter all external function calls by func-
tion name, memory block name, and hook address. The items within any of these
categories can be filtered using a text filter field capable of parsing regular expres-
sions. All subsequent filter lists only show possible hooks that pass the previous
filter. By selecting one or more items from the list of items that pass the text filter,
each filtering step can be further refined. The analyst can then select the hook mode
they wish to use and add all the hooks that pass the filters. If a new hook has been
added previously, it will be overwritten using the new mode.

Hooks can additionally be added and deleted, and an analyst can change their mode
using the (right click) context menu in Ghidra’s Listing window (see Figures 6.2

Chapter 6. Results 34

FIGURE 6.1: Ghidrion Tab Allowing Analysts To Filter and Add Hooks
for External Functions

and 6.3). Hooks added either way will appear in a list in Ghidrion’s main window,
from where they can be deleted.

6.2.2 Adding Memory

Figure 6.4 shows the sub-tab where an analyst can add memory entries to the en-
try state of an Init YAML file. It behaves differently depending on the information
provided:

• If no end address is specified and the value is at most one byte (i.e. two hex-
adecimal characters), an entry is created with the specified value at the speci-
fied address.

• If an end address greater than the start address and a value of at most one byte
is provided, the value is repeated for every address between and including the
start and end addresses. This can be used, for example, to set an entire memory
range as symbolic.

• If no end address is specified, but the value is larger than one byte, the value
is split into entries with incremental addresses.

• If none of the above applies, an error is displayed.

Chapter 6. Results 35

FIGURE 6.2: Adding a Hook Using the Context Menu in Ghidra’s
Listing Window

FIGURE 6.3: Changing a Hook Using the Context Menu in
Ghidra’s Listing Window

Chapter 6. Results 36

FIGURE 6.4: Ghidrion Tab Allowing Analysts To Add Memory Entries

The table below the entry section contains a list of all memory entries previously
added to the Init YAML file. One or more entries can be selected and removed.
Adding a memory entry with the address of a previously added entry replaces it.

6.2.3 Adding Registers

Adding registers to the Init YAML file is very similar to adding memory entries. The
analyst specifies a register name, up to four bytes for the value, and whether the
register should be marked as symbolic or not. Existing entries with the same name
as the register to be added get replaced. Analogous to the tab for adding memory
entries, there is a table for checking and removing previously added registers, as
shown in Figure 6.5.

6.2.4 Saving and Importing Init Trace Files

After adding hooks, memory entries and registers, the internal representation of the
Init YAML file can be exported to a file on disk, which is then compatible with Mo-
rion and allows an analyst to create a trace. If they wish to continue editing a previ-
ously created Init YAML file, they can load it into the plugin to do so.

Chapter 6. Results 37

FIGURE 6.5: Ghidrion Tab Allowing Analysts To Add Registers. The Register
Entries in the Table in the Lower Half Differ From the Example Init YAML File

Introduced in Section 4.1.2.
.

Chapter 6. Results 38

6.3 Tracing

Tracing has to be done in a GDB environment. This can be either in an external
shell or using Ghidra’s Debugger tool. Ghidrion does not affect this part of Morion’s
workflow (see Figure 4.1).

6.4 Analysing a Trace

The concept (see Section 4.2.2) describes that analysing a Traced YAML file consists
of comparing the entry and leave states, looking at the recorded instructions and us-
ing Morion’s analysis tools. The second tab of Ghidrion provides this functionality.

6.4.1 Differences Between Entry and Leave States

Ghidrion’s analysis tab has two sub-tabs. These provide a way to quickly check
which memory and register values changed during the instructions recorded in the
trace, and which of these were marked as symbolic by Morion’s analysis tools. The
table entries are printed in different colours depending on certain characteristics, as
shown in Figures 6.6 and 6.7:

• The register name or memory address is printed in green ink if the values are
different, and in red ink if the value is missing in either the entry or leave state.

• If a value is marked as symbolic in either the entry or leave state, the corre-
sponding table entry is printed in blue ink.

• If none of the above applies, the cell values are printed in black ink.

6.4.2 Marking Visited Instructions

When a Traced YAML file is imported, Ghidrion marks all recorded instructions in
Ghidra’s Listing and Decompile window. This allows an analyst to easily see which
parts of a binary were executed during tracing, as shown in Figure 6.8. The colour of
the marks can be selected using a colour picker and removed using the correspond-
ing button.

6.4.3 Using Morion’s Analysis Modules

Due to the reasons listed in Section 5.2.5, Ghidrion does not currently support us-
ing Morion’s analysis modules within its GUI. This must be done manually in an
external shell.

Chapter 6. Results 39

FIGURE 6.6: Differences in Memory Values Before and After Tracing

Chapter 6. Results 40

FIGURE 6.7: Differences in Register Values Before and After Tracing
.

FIGURE 6.8: Executed Instructions During a Trace Marked in Ghidra’s Listing
and Decompile Windows

41

Chapter 7

Discussion and Outlook

This chapter discusses how the results described in Section 6 may impact both fu-
ture plugin developers and analysts using Ghidrion. Additionally, it looks at known
issues and ideas that may be addressed in future work.

7.1 Created Documentation

Unfortunately, the documentation available for developing Ghidra plugins is very
sparse. Ghidra itself only publishes instructions on how to install GhidraDev [71].
Its API documentation consists only of JavaDoc, which provides little detail and
no overview. Additional information is available in books by Eagle and Nance [48]
and David [53], but they are mostly focused on using Ghidra or developing Ghidra
modules other than ProgramPlugins (such as Ghidrion). The only other source of
information available to the authors were other open-source plugins (especially re-
garding service discovery, as described in Section 5.1.3). However, they often contain
little or no documentation.

This slowed down the development of Ghidrion significantly, as the information
needed for each step had to be gathered from multiple sources, and certain parts
had to be implemented multiple times as a result of changing and improving under-
standing of how Ghidra’s API works.

Based on this, the additional information provided in this thesis, and in particular in
Sections 5.1 and 5.2, will prove valuable to developers creating similar plugins in the
future. As mentioned in Section 6.1, the source code of Ghidrion itself, along with the
JavaDoc comments for classes and methods, provides more detailed documentation
showing the specific application of the principles outlined in this thesis.

7.2 Improvements in the Workflow of an Analyst

In this section, the authors discuss the main advantages of using Ghidrion over ei-
ther Morion alone or a combination of Morion and Ghidra.

7.2.1 Create Init YAML

Ghidrion’s support for adding function hooks is the most fundamental improve-
ment in an analyst’s workflow. It allows them to automatically add hooks for all in-
vocations of external functions (i.e. functions from external libraries), which would

Chapter 7. Discussion and Outlook 42

otherwise have to be added manually on an individual basis. It further removes the
need to manually type addresses, thus eliminating a source of error. The only data
that still needs to be entered is the library name, the reason for which is discussed in
Section 7.3.2.

When adding memory entries and registers to the Init YAML, Ghidrion mainly pro-
vides convenience functionality, like the ability to split large memory values across
addresses, as discussed in Section 6.2.2. It also provides some input validation by en-
forcing maximum value lengths and that they contain only valid hexadecimal char-
acters.

7.2.2 Tracing

Since Ghidra already had a way to access a GDB environment in its debugger tool,
the authors did not re-implement this in Ghidrion.

7.2.3 Analyse Traced YAML

Since the Traced YAML does not list the entry and leave states side by side, it can be
rather cumbersome to compare the values. Ghidrion simplifies this by juxtaposing
the values and indicating which elements changed during the executed instructions.

It also highlights the executed instructions in Ghidra’s Listing window, allowing an
analyst to quickly see which parts of the binary were executed. The main advantage
over just looking at the Traced YAML is that the corresponding instructions in the C
pseudocode are also marked in the Decompile window.

7.3 Future Work

During the development of Ghidrion, the authors collected ideas that did not fit the
scope of this thesis. This section provides a list of such ideas, with the reasons why
they are too complex to be considered for implementation as part of this work. It
further discusses known limitations of the current implementation.

7.3.1 Hooking Functions in Sections Other Than .text

For ELF binaries, Ghidrion detects external functions outside of .text. This is not
a problem when interacting with Ghidrion, but when exporting the generated Init
YAML, it is considerably more difficult to calculate a valid return address, especially
in the .plt section, since it is not possible to just use the next instruction. Hooking
function calls in these sections is desirable because all calls to any external function
will eventually execute the instructions in these sections, which would make it pos-
sible to hook any execution of a particular function with a single entry in the YAML.
For now, analysts can easily ignore entries outside of .text by using a text filter. This
is demonstrated in Figure 6.1.

7.3.2 Automatic Library Detection

Currently, the analyst has to provide the library name of the function they wish to
hook. Ideally, instead of just a text field in the panel where hooks can be added
(as shown in Figure 6.1), the library name would be another value by which hooks

Chapter 7. Discussion and Outlook 43

can be filtered, analogous to the function and block name and function address.
However, this could not be implemented for two reasons. First, the library name
would have to be the same (i.e. the same spelling, capitalisation, presence or absence
of version number, etc.) as what is used in Morion. This would be a feasible change
but was not attempted because of the second problem.

Fundamentally, the library name has to be stored somewhere in the binary, since
the loader needs to know which dynamic library to link function calls to. However,
based on checking the Function, Symbol, and Reference objects along with the use of
FunctionManager, SymbolTable, ReferenceManager, Memory, and ExternalManager, it
seems that Ghidra’s binary loader does not load this information into the respective
objects if the external library is not present on the system running Ghidra. And since
the machine running the binary and the machine running Ghidra are often not the
same, the authors cannot assume that the library is present. Listing 7.1 shows the
error in the import logs when loading the example binary.

1 ----- Loading /Users/valentinhuber/Downloads/strlen -----
8 Linking external programs to strlen...
9 [libc.so.6] -> not found

10 ----- [strlen] Resolve 7 external symbols -----
11 Unresolved external symbols which remain: 7

LISTING 7.1: Excerpt from Logs when Importing Example Code Showing Error
Concerning External Symbols.

Looking at how other people have attempted to solve this issue, it seems that the
most common approach is to retrieve the path of the library and then manually
import it [72], [73], [74], [75]. For the reason explained above, this does not work
and, as expected, the function calls to retrieve the path (see Listing 7.2) return null.

6 externalLocation = getFunctionAt(toAddr("004341fe")) ⌋
.getThunkedFunction(True).getExternalLocation()↪→

12 libPath = currentProgram.getExternalManager() ⌋
.getExternalLibrary(externalLocation.getLibraryName()) ⌋
.getAssociatedProgramPath()

↪→

↪→

LISTING 7.2: Excerpt of Code Proposed in [72] To Load External Symbols Re-
turning null in the Author’s Java Implementation. See Appendix 3 for the Full

Proposal.

The authors have found no other way to retrieve this data using Ghidra’s current ca-
pabilities. Implementing this feature would seem to require either modifying Ghidra’s
binary loader or writing custom code to parse binaries and read the library name
(see Section 5.1.3). Both options are beyond the scope of this project and were not
pursued.

7.3.3 Automatic Register Detection

As suggested in Section 4.2.1, for future error prevention, Ghidrion might give ana-
lysts a list of available registers to choose from, to limit the exported values to valid
register names. This raises two issues: First, as mentioned in Section 7.3.2, the names
used by Morion need to match the names used in Ghidra, which may require either

Chapter 7. Discussion and Outlook 44

changes in Morion or a translation layer in Ghidrion, defeating the point of it being
automatic.

However, the main problem in implementing this is that while Ghidra provides a list
of registers for a given binary (see Section 5.1.4), this list contains many irrelevant
registers. Appendix 4 provides a table with attributes for each register. These could
be used to filter the list to show only relevant registers, but the authors did not find
a way to make this filter narrow enough and therefore opted to use a text field to
prompt for the register name.

7.3.4 Further Ideas

The following are additional ideas that do not warrant their own section:

• Hooked functions should be marked in Ghidra’s Listing window.

• Ghidrion should have the ability to open the GDB environment in Ghidra’s De-
bugger tool and preload Morion’s tracing script. This would require Ghidrion
to know Morion’s installation path.

• Ghidrion should be automatically built and released on a feature branch merge
(known as continuous delivery). Currently, releases have to be manually cre-
ated using GhidraDev (see Section 5.1.1) and published.

45

Indices

1 Bibliography

[1] “Cyber-defence (cyd) campus.” (n.d.), [Online]. Available: https://cydcampus.
ch (visited on May 30, 2023).

[2] “Ghidra.” (n.d.), [Online]. Available: https://ghidra-sre.org/ (visited
on Apr. 10, 2023).

[3] D. Andriesse, Practical binary analysis: build your own Linux tools for binary in-
strumentation, analysis, and disassembly. no starch press, 2018.

[4] J. Erickson, Hacking: The Art of Exploitation. no starch press, 2008.
[5] T. Cipresso and M. Stamp, “Software reverse engineering,” in Handbook of

Information and Communication Security, P. Stavroulakis and M. Stamp, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 659–696, ISBN: 978-3-
642-04117-4. DOI: 10.1007/978-3-642-04117-4_31. [Online]. Available:
https://doi.org/10.1007/978-3-642-04117-4_31.

[6] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and challenges in soft-
ware reverse engineering,” Commun. ACM, vol. 54, no. 4, pp. 142–151, Apr.
2011, ISSN: 0001-0782. DOI: 10.1145/1924421.1924451. [Online]. Avail-
able: https://doi.org/10.1145/1924421.1924451.

[7] E. Eilam, Reversing: secrets of reverse engineering. John Wiley & Sons, 2011.
[8] S. Alrabaee, M. Debbabi, P. Shirani, et al., “Binary analysis overview,” in Binary

Code Fingerprinting for Cybersecurity: Application to Malicious Code Fingerprint-
ing. Cham: Springer International Publishing, 2020, pp. 7–44, ISBN: 978-3-030-
34238-8. DOI: 10.1007/978- 3- 030- 34238- 8_2. [Online]. Available:
https://doi.org/10.1007/978-3-030-34238-8_2.

[9] N. Nethercote, “Dynamic binary analysis and instrumentation,” University of
Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-606, Nov. 2004.
DOI: 10.48456/tr-606. [Online]. Available: https://www.cl.cam.ac.
uk/techreports/UCAM-CL-TR-606.pdf.

[10] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, “Selective symbolic
execution,” 2009. [Online]. Available: http://infoscience.epfl.ch/
record/139393.

[11] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi, “A survey
of symbolic execution techniques,” ACM Comput. Surv., vol. 51, no. 3, May
2018, ISSN: 0360-0300. DOI: 10.1145/3182657. [Online]. Available: https:
//doi.org/10.1145/3182657.

[12] “Z3.” (n.d.), [Online]. Available: https://github.com/Z3Prover/z3
(visited on May 30, 2023).

[13] J. Salwan. “Triton — improve the taint analysis.” (May 16, 2020), [Online].
Available: https://github.com/JonathanSalwan/Triton/issues/
908#issuecomment-629683535 (visited on Jun. 7, 2023).

https://cydcampus.ch
https://cydcampus.ch
https://ghidra-sre.org/
https://doi.org/10.1007/978-3-642-04117-4_31
https://doi.org/10.1007/978-3-642-04117-4_31
https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1145/1924421.1924451
https://doi.org/10.1007/978-3-030-34238-8_2
https://doi.org/10.1007/978-3-030-34238-8_2
https://doi.org/10.48456/tr-606
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-606.pdf
http://infoscience.epfl.ch/record/139393
http://infoscience.epfl.ch/record/139393
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://github.com/Z3Prover/z3
https://github.com/JonathanSalwan/Triton/issues/908#issuecomment-629683535
https://github.com/JonathanSalwan/Triton/issues/908#issuecomment-629683535

Indices 46

[14] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “SoK: (State of) The Art of War:
Offensive Techniques in Binary Analysis,” in IEEE Symposium on Security and
Privacy, 2016.

[15] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution framework,”
in Symposium sur la sécurité des technologies de l’information et des communica-
tions, ser. SSTIC, Rennes, France, Jun. 2015, pp. 31–54.

[16] M. Mossberg, F. Manzano, E. Hennenfent, et al., Manticore: A User-Friendly
Symbolic Execution Framework for Binaries and Smart Contracts, Nov. 2019. DOI:
10.1109/ASE.2019.00133. [Online]. Available: https://github.com/
trailofbits/manticore.

[17] V. Chipounov, V. Kuznetsov, and G. Candea, “S2e: A platform for in-vivo
multi-path analysis of software systems,” SIGPLAN Not., vol. 46, no. 3, pp. 265–
278, Mar. 2011, ISSN: 0362-1340. DOI: 10.1145/1961296.1950396. [Online].
Available: https://doi.org/10.1145/1961296.1950396.

[18] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing mayhem on
binary code,” in 2012 IEEE Symposium on Security and Privacy, 2012, pp. 380–
394. DOI: 10.1109/SP.2012.31.

[19] R. David, S. Bardin, T. D. Ta, et al., “BINSEC/SE: A dynamic symbolic execu-
tion toolkit for binary-level analysis,” in IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka, Japan,
March 14-18, 2016 - Volume 1, IEEE Computer Society, 2016, pp. 653–656. DOI:
10.1109/SANER.2016.43. [Online]. Available: https://doi.org/10.
1109/SANER.2016.43.

[20] E. Cheng, “Binary analysis and symbolic execution with angr,” Ph.D. disser-
tation, PhD thesis, The MITRE Corporation, 2016.

[21] “Triton: A dynamic binary analysis library.” (n.d.), [Online]. Available: https:
//triton-library.github.io/ (visited on Mar. 28, 2023).

[22] “Libtriton: Triton.” (n.d.), [Online]. Available: https://triton-library.
github.io/documentation/doxygen/index.html (visited on May 30,
2023).

[23] A. Niemetz and M. Preiner, “Bitwuzla at the SMT-COMP 2020,” CoRR, vol. abs/2006.01621,
2020. arXiv: 2006.01621. [Online]. Available: https://arxiv.org/abs/
2006.01621.

[24] “Tritondse.” (n.d.), [Online]. Available: https://github.com/quarkslab/
tritondse (visited on May 30, 2023).

[25] “Ida pro.” (n.d.), [Online]. Available: https://hex-rays.com/ida-pro/
(visited on Apr. 10, 2023).

[26] “Binary ninja.” (n.d.), [Online]. Available: https://binary.ninja/ (vis-
ited on Apr. 10, 2023).

[27] A. Novoseltseva. “Angryghidra.” (n.d.), [Online]. Available: https://github.
com/Nalen98/AngryGhidra (visited on Apr. 10, 2023).

[28] “Summ3r of h4ck 2020. results of the program.” (n.d.), [Online]. Available:
https://prog.world/summ3r-of-h4ck-2020-results-of-the-
program/ (visited on Apr. 10, 2023).

[29] L. Borzacchiello, E. Coppa, and C. Demetrescu, “Seninja: A symbolic execution
plugin for binary ninja,” SoftwareX, vol. 20, p. 101 219, 2022.

[30] A. Skliarova, The taming of gorynych 2, or symbolic performance in ghidra, n.d.
[Online]. Available: https://habr-com.translate.goog/ru/company/
dsec/blog/520206/?_x_tr_sl=ru&_x_tr_tl=en&_x_tr_hl=en&
_x_tr_pto=sc&_x_tr_hist=true (visited on Apr. 10, 2023).

https://doi.org/10.1109/ASE.2019.00133
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/SANER.2016.43
https://doi.org/10.1109/SANER.2016.43
https://triton-library.github.io/
https://triton-library.github.io/
https://triton-library.github.io/documentation/doxygen/index.html
https://triton-library.github.io/documentation/doxygen/index.html
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://arxiv.org/abs/2006.01621
https://github.com/quarkslab/tritondse
https://github.com/quarkslab/tritondse
https://hex-rays.com/ida-pro/
https://binary.ninja/
https://github.com/Nalen98/AngryGhidra
https://github.com/Nalen98/AngryGhidra
https://prog.world/summ3r-of-h4ck-2020-results-of-the-program/
https://prog.world/summ3r-of-h4ck-2020-results-of-the-program/
https://habr-com.translate.goog/ru/company/dsec/blog/520206/?_x_tr_sl=ru&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc&_x_tr_hist=true
https://habr-com.translate.goog/ru/company/dsec/blog/520206/?_x_tr_sl=ru&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc&_x_tr_hist=true
https://habr-com.translate.goog/ru/company/dsec/blog/520206/?_x_tr_sl=ru&_x_tr_tl=en&_x_tr_hl=en&_x_tr_pto=sc&_x_tr_hist=true

Indices 47

[31] “Cle - cle documentation.” (n.d.), [Online]. Available: https://docs.angr.
io/projects/cle/en/latest/quickstart.html#finding-shared-
libraries (visited on Apr. 10, 2023).

[32] J. Ziegler, “Edge of the art in vulnerability research version 4 of 4,” Two Six
Labs, Tech. Rep., 2021.

[33] “Angr management.” (n.d.), [Online]. Available: https://github.com/
angr/angr-management (visited on Mar. 23, 2023).

[34] “Scripting angr management.” (n.d.), [Online]. Available: https://docs.
angr.io/en/latest/extending- angr/angr_management.html
(visited on Mar. 23, 2023).

[35] “Ponce.” (n.d.), [Online]. Available: https://github.com/illera88/
Ponce (visited on Mar. 28, 2023).

[36] “Introduction - ponce.” (n.d.), [Online]. Available: https://docs.idaponce.
com/ (visited on Mar. 28, 2023).

[37] “Manticore ui.” (n.d.), [Online]. Available: https://github.com/trailofbits/
ManticoreUI (visited on Mar. 28, 2023).

[38] M. Mossberg, F. Manzano, E. Hennenfent, et al., “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,” in 2019 34th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
2019, pp. 1186–1189. DOI: 10.1109/ASE.2019.00133.

[39] V. Buterin et al., “A next-generation smart contract and decentralized applica-
tion platform,” white paper, vol. 3, no. 37, pp. 2–1, 2014.

[40] “Webassembly.” (n.d.), [Online]. Available: https://webassembly.org/
(visited on Jun. 2, 2023).

[41] “Manticore.” (n.d.), [Online]. Available: https://github.com/trailofbits/
manticore (visited on Mar. 28, 2023).

[42] A. Chang. “Mui: Visualizing symbolic execution with manticore and binary
ninja.” (Nov. 2021), [Online]. Available: https://blog.trailofbits.
com/2021/11/17/mui-visualizing-symbolic-execution-with-
manticore-and-binary-ninja/ (visited on Mar. 28, 2023).

[43] “Welcome to manticore’s documentation!” (n.d.), [Online]. Available: https:
//manticore.readthedocs.io/en/latest/index.html (visited on
Jun. 2, 2023).

[44] D. Pfammatter, personal communication, May 2023.
[45] M. Weiser, “Program slicing,” in Proceedings of the 5th International Conference

on Software Engineering, ser. ICSE ’81, San Diego, California, USA: IEEE Press,
1981, pp. 439–449, ISBN: 0897911466.

[46] “Jython: Python for the java platform.” (n.d.), [Online]. Available: https:
//github.com/jython/jython (visited on Jun. 1, 2023).

[47] “Ghidra api — ghidrascript.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/app/script/GhidraScript.html
(visited on Jun. 1, 2023).

[48] C. Eagle and K. Nance, The Ghidra Book: The Definitive Guide. no starch press,
2020.

[49] “Ghidra api — flatprogramapi.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.
html (visited on Jun. 1, 2023).

[50] “Ghidra api — program.” (n.d.), [Online]. Available: https://ghidra.re/
ghidra_docs/api/ghidra/program/model/listing/Program.
html (visited on May 24, 2023).

https://docs.angr.io/projects/cle/en/latest/quickstart.html#finding-shared-libraries
https://docs.angr.io/projects/cle/en/latest/quickstart.html#finding-shared-libraries
https://docs.angr.io/projects/cle/en/latest/quickstart.html#finding-shared-libraries
https://github.com/angr/angr-management
https://github.com/angr/angr-management
https://docs.angr.io/en/latest/extending-angr/angr_management.html
https://docs.angr.io/en/latest/extending-angr/angr_management.html
https://github.com/illera88/Ponce
https://github.com/illera88/Ponce
https://docs.idaponce.com/
https://docs.idaponce.com/
https://github.com/trailofbits/ManticoreUI
https://github.com/trailofbits/ManticoreUI
https://doi.org/10.1109/ASE.2019.00133
https://webassembly.org/
https://github.com/trailofbits/manticore
https://github.com/trailofbits/manticore
https://blog.trailofbits.com/2021/11/17/mui-visualizing-symbolic-execution-with-manticore-and-binary-ninja/
https://blog.trailofbits.com/2021/11/17/mui-visualizing-symbolic-execution-with-manticore-and-binary-ninja/
https://blog.trailofbits.com/2021/11/17/mui-visualizing-symbolic-execution-with-manticore-and-binary-ninja/
https://manticore.readthedocs.io/en/latest/index.html
https://manticore.readthedocs.io/en/latest/index.html
https://github.com/jython/jython
https://github.com/jython/jython
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html
https://ghidra.re/ghidra_docs/api/ghidra/app/script/GhidraScript.html
https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html
https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html
https://ghidra.re/ghidra_docs/api/ghidra/program/flatapi/FlatProgramAPI.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/Program.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/Program.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/Program.html

Indices 48

[51] “Ghidra api — abstractanalyzer.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/app/services/AbstractAnalyzer.
html (visited on Jun. 1, 2023).

[52] “Ghidra api — programplugin.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/app/plugin/ProgramPlugin.html
(visited on May 24, 2023).

[53] A. David, Ghidra Software Reverse Engineering for Beginners: Analyze, identify,
and avoid malicious code and potential threats in your networks and systems. Packt
Publishing Ltd., 2020.

[54] “Ghidra api — pluginevent.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/framework/plugintool/PluginEvent.
html (visited on Jun. 1, 2023).

[55] “Ghidra api — componentprovider.” (n.d.), [Online]. Available: https://
ghidra.re/ghidra_docs/api/docking/ComponentProvider.html
(visited on May 24, 2023).

[56] “Ghidra api — plugin.” (n.d.), [Online]. Available: https://ghidra.re/
ghidra_docs/api/ghidra/framework/plugintool/Plugin.html
(visited on Jun. 1, 2023).

[57] “Ghidra api — abstractprogramloader.” (n.d.), [Online]. Available: https:
//ghidra.re/ghidra_docs/api/ghidra/app/util/opinion/
AbstractProgramLoader.html (visited on Jun. 1, 2023).

[58] “Ghidra api — gfilesystem.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/formats/gfilesystem/GFileSystem.
html (visited on Jun. 1, 2023).

[59] “Ghidra api — exporter.” (n.d.), [Online]. Available: https://ghidra.re/
ghidra_docs/api/ghidra/app/util/exporter/Exporter.html
(visited on Jun. 1, 2023).

[60] “Ghidra api — overview.” (n.d.), [Online]. Available: https://ghidra.re/
ghidra_docs/api/index.html (visited on May 24, 2023).

[61] “Ghidra api — functionmanager.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/program/model/listing/FunctionManager.
html (visited on May 24, 2023).

[62] “Ghidra api — referencemanager.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/program/model/symbol/ReferenceManager.
html (visited on May 24, 2023).

[63] “Ghidra api — memory.” (n.d.), [Online]. Available: https://ghidra.re/
ghidra_docs/api/ghidra/program/model/mem/Memory.html (vis-
ited on May 24, 2023).

[64] “Ghidra api — programcontext.” (n.d.), [Online]. Available: https://ghidra.
re/ghidra_docs/api/ghidra/program/model/listing/ProgramContext.
html (visited on May 24, 2023).

[65] “Ghidra api — listingcontextaction.” (n.d.), [Online]. Available: https://
ghidra.re/ghidra_docs/api/ghidra/app/context/ListingContextAction.
html (visited on May 24, 2023).

[66] S. Burbeck, Applications programming in smalltalk-80(tm): How to use model-view-
controller (mvc), 1987. [Online]. Available: http://www.dgp.toronto.
edu/~dwigdor/teaching/csc2524/2012_F/papers/mvc.pdf (visited
on Jun. 1, 2023).

[67] A. Fowler. “A swing architecture overview.” (n.d.), [Online]. Available: https:
//www.oracle.com/java/technologies/a-swing-architecture.
html (visited on May 24, 2023).

https://ghidra.re/ghidra_docs/api/ghidra/app/services/AbstractAnalyzer.html
https://ghidra.re/ghidra_docs/api/ghidra/app/services/AbstractAnalyzer.html
https://ghidra.re/ghidra_docs/api/ghidra/app/services/AbstractAnalyzer.html
https://ghidra.re/ghidra_docs/api/ghidra/app/plugin/ProgramPlugin.html
https://ghidra.re/ghidra_docs/api/ghidra/app/plugin/ProgramPlugin.html
https://ghidra.re/ghidra_docs/api/ghidra/framework/plugintool/PluginEvent.html
https://ghidra.re/ghidra_docs/api/ghidra/framework/plugintool/PluginEvent.html
https://ghidra.re/ghidra_docs/api/ghidra/framework/plugintool/PluginEvent.html
https://ghidra.re/ghidra_docs/api/docking/ComponentProvider.html
https://ghidra.re/ghidra_docs/api/docking/ComponentProvider.html
https://ghidra.re/ghidra_docs/api/ghidra/framework/plugintool/Plugin.html
https://ghidra.re/ghidra_docs/api/ghidra/framework/plugintool/Plugin.html
https://ghidra.re/ghidra_docs/api/ghidra/app/util/opinion/AbstractProgramLoader.html
https://ghidra.re/ghidra_docs/api/ghidra/app/util/opinion/AbstractProgramLoader.html
https://ghidra.re/ghidra_docs/api/ghidra/app/util/opinion/AbstractProgramLoader.html
https://ghidra.re/ghidra_docs/api/ghidra/formats/gfilesystem/GFileSystem.html
https://ghidra.re/ghidra_docs/api/ghidra/formats/gfilesystem/GFileSystem.html
https://ghidra.re/ghidra_docs/api/ghidra/formats/gfilesystem/GFileSystem.html
https://ghidra.re/ghidra_docs/api/ghidra/app/util/exporter/Exporter.html
https://ghidra.re/ghidra_docs/api/ghidra/app/util/exporter/Exporter.html
https://ghidra.re/ghidra_docs/api/index.html
https://ghidra.re/ghidra_docs/api/index.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/FunctionManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/FunctionManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/FunctionManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/symbol/ReferenceManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/symbol/ReferenceManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/symbol/ReferenceManager.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/mem/Memory.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/mem/Memory.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/ProgramContext.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/ProgramContext.html
https://ghidra.re/ghidra_docs/api/ghidra/program/model/listing/ProgramContext.html
https://ghidra.re/ghidra_docs/api/ghidra/app/context/ListingContextAction.html
https://ghidra.re/ghidra_docs/api/ghidra/app/context/ListingContextAction.html
https://ghidra.re/ghidra_docs/api/ghidra/app/context/ListingContextAction.html
http://www.dgp.toronto.edu/~dwigdor/teaching/csc2524/2012_F/papers/mvc.pdf
http://www.dgp.toronto.edu/~dwigdor/teaching/csc2524/2012_F/papers/mvc.pdf
https://www.oracle.com/java/technologies/a-swing-architecture.html
https://www.oracle.com/java/technologies/a-swing-architecture.html
https://www.oracle.com/java/technologies/a-swing-architecture.html

Indices 49

[68] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, 1994,
ISBN: 0201633612. [Online]. Available: http://www.amazon.com/Design-
Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/
ref=ntt_at_ep_dpi_1.

[69] “Ghidrathon.” (n.d.), [Online]. Available: https://github.com/mandiant/
Ghidrathon (visited on Jun. 1, 2023).

[70] “Pyhidra.” (n.d.), [Online]. Available: https://github.com/dod-cyber-
crime-center/pyhidra (visited on Jun. 1, 2023).

[71] “Ghidradev readme.” (n.d.), [Online]. Available: https://github.com/
NationalSecurityAgency / ghidra / blob / master / GhidraBuild /
EclipsePlugins/GhidraDev/GhidraDevPlugin/GhidraDev_README.
html (visited on Jun. 6, 2023).

[72] “Accessing external function address space.” (Feb. 19, 2022), [Online]. Avail-
able: https : / / github . com / NationalSecurityAgency / ghidra /
issues/1882#issuecomment-1046047575 (visited on Jun. 1, 2023).

[73] A. Strelsky. “Retrieving external location from symbol address.” (May 3, 2020),
[Online]. Available: https://github.com/NationalSecurityAgency/
ghidra/issues/1833 (visited on Jun. 1, 2023).

[74] “Idiomatic way of creating external data.” (May 7, 2019), [Online]. Available:
https://github.com/NationalSecurityAgency/ghidra/issues/
578 (visited on Jun. 1, 2023).

[75] A. Osti. “How to solve references between multiple raw binary images?” (Nov. 12,
2019), [Online]. Available: https://github.com/NationalSecurityAgency/
ghidra/issues/1236 (visited on Jun. 1, 2023).

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://github.com/mandiant/Ghidrathon
https://github.com/mandiant/Ghidrathon
https://github.com/dod-cyber-crime-center/pyhidra
https://github.com/dod-cyber-crime-center/pyhidra
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraBuild/EclipsePlugins/GhidraDev/GhidraDevPlugin/GhidraDev_README.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraBuild/EclipsePlugins/GhidraDev/GhidraDevPlugin/GhidraDev_README.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraBuild/EclipsePlugins/GhidraDev/GhidraDevPlugin/GhidraDev_README.html
https://github.com/NationalSecurityAgency/ghidra/blob/master/GhidraBuild/EclipsePlugins/GhidraDev/GhidraDevPlugin/GhidraDev_README.html
https://github.com/NationalSecurityAgency/ghidra/issues/1882#issuecomment-1046047575
https://github.com/NationalSecurityAgency/ghidra/issues/1882#issuecomment-1046047575
https://github.com/NationalSecurityAgency/ghidra/issues/1833
https://github.com/NationalSecurityAgency/ghidra/issues/1833
https://github.com/NationalSecurityAgency/ghidra/issues/578
https://github.com/NationalSecurityAgency/ghidra/issues/578
https://github.com/NationalSecurityAgency/ghidra/issues/1236
https://github.com/NationalSecurityAgency/ghidra/issues/1236

Indices 50

2 List of Figures

2.1 Symbolic Execution Example: Evolution of the Symbolic State 8
2.2 Symbolic Execution Design Dimensions 9

3.1 AngryGhidra: Set Blank State Address 17
3.2 AngryGhidra: Find Address and Avoid Addresses 18
3.3 AngryGhidra: Filled Panel Reporting a Solution 19

4.1 Morion’s Workflow . 21

6.1 Ghidrion: Adding Hooks . 34
6.2 Ghidrion: Adding Hooks Using the Context Menu 35
6.3 Ghidrion: Changing Hooks Using the Context Menu 35
6.4 Ghidrion: Adding Memory Entries . 36
6.5 Ghidrion: Adding Registers . 37
6.6 Ghidrion: Diff View for Memory Entries 39
6.7 Ghidrion: Diff View for Registers . 40
6.8 Ghidrion: Marking Executed Instructions 40

3 List of Tables

A1 Registers Identified by Ghidra . 56

4 List of Listings

1.1 Example Code — strlen.c . 3
2.1 Pseudocode Including a Nested if Statement 7
3.1 Main Method of strlen.c . 16
4.1 Example Init YAML File . 24
4.2 Excerpt From the Instructions of the Example Traced YAML File 25
4.3 Excerpt From the Entry and Leave State of the Example Traced YAML

File . 26
5.1 Ghidrion: Gathering Hookable Functions 29
5.2 Ghidrion: Creating Context Menu . 31
7.1 Excerpt from Logs when Importing Example Code 43
7.2 Code Excerpt To Load External Symbols 43
A1 Example Traced YAML File . 54
A2 Code To Load External Symbols . 55

51

Appendix

1 Installation of AngryGhidra

The installation of AngryGhidra is documented in its GitHub README [27]. It is
quite straight-forward:

1. Install Python3 and make sure it is added to your PATH environment variable.

2. In a terminal, run python3 -m pip install angr to install angr.

3. Download and run the latest release of Ghidra.

4. Download AngryGhidra from GitHub Releases. It has to be the zip file that
matches the version of Ghidra.

5. In Ghidra, install the extension by File → Install Extensions... and choos-
ing the AngryGhidra zip file.

https://github.com/Nalen98/AngryGhidra/releases

Appendix 52

2 Full Example Traced YAML File

1 hooks:
2 libc:
3 printf:
4 - entry: '0x4005b4'
5 leave: '0x4005b8'
6 mode: skip
7 - entry: '0x4005d0'
8 leave: '0x4005d4'
9 mode: skip

10 strlen:
11 - entry: '0x400594'
12 leave: '0x400598'
13 mode: model
14 info:
15 arch: armv7
16 thumb: false
17 instructions:
18 - - '0x00400588'
19 - 00 30 a0 e1
20 - 'mov r3, r0'
21 - 'L15: `s = (char *) calloc(BUF_LENGTH, sizeof(char));`'
22 - - '0x0040058c'
23 - 08 30 0b e5
24 - 'str r3, [fp, #-8]'
25 - 'L15: `s = (char *) calloc(BUF_LENGTH, sizeof(char));`'
26 - - '0x00400590'
27 - 08 00 1b e5
28 - 'ldr r0, [fp, #-8]'
29 - 'L18: `if(strlen(s) == 2) {`'
30 - - '0x00400594'
31 - 59 ff ef ea
32 - 'b #-0x400294'
33 - '// Hook: libc:strlen (on=entry, mode=model)'
34 - - '0x00000300'
35 - 07 00 a0 e3
36 - 'mov r0, #0x7'
37 - '// Hook: libc:strlen (on=leave, mode=model)'
38 - - '0x00000304'
39 - 00 00 40 e3
40 - 'movt r0, #0x0'
41 - '// Hook: libc:strlen (on=leave, mode=model)'
42 - - '0x00000308'
43 - a2 00 10 ea
44 - 'b #0x400290'
45 - '// Hook: libc:strlen (on=leave, mode=model)'
46 - - '0x00400598'
47 - 00 30 a0 e1
48 - 'mov r3, r0'
49 - 'L18: `if(strlen(s) == 2) {`'
50 - - '0x0040059c'
51 - 02 00 53 e3
52 - 'cmp r3, #2'
53 - 'L18: `if(strlen(s) == 2) {`'
54 - - '0x004005a0'
55 - 06 00 00 1a
56 - 'bne #0x4005c0'
57 - 'L18: `if(strlen(s) == 2) {`'
58 - - '0x004005c0'
59 - 08 10 1b e5
60 - 'ldr r1, [fp, #-8]'

Appendix 53

61 - 'L22: `printf("strlen(''%s'') != 2\n", s);`'
62 - - '0x004005c4'
63 - 1c 30 9f e5
64 - 'ldr r3, [pc, #0x1c]'
65 - 'L22: `printf("strlen(''%s'') != 2\n", s);`'
66 - - '0x004005c8'
67 - 03 30 8f e0
68 - 'add r3, pc, r3'
69 - 'L22: `printf("strlen(''%s'') != 2\n", s);`'
70 - - '0x004005cc'
71 - 03 00 a0 e1
72 - 'mov r0, r3'
73 - 'L22: `printf("strlen(''%s'') != 2\n", s);`'
74 - - '0x004005d0'
75 - 0a ff ef ea
76 - 'b #-0x4003d0'
77 - '// Hook: libc:printf (on=entry, mode=skip)'
78 - - '0x00000200'
79 - 17 00 a0 e3
80 - 'mov r0, #0x17'
81 - '// Hook: libc:printf (on=leave, mode=skip)'
82 - - '0x00000204'
83 - 00 00 40 e3
84 - 'movt r0, #0x0'
85 - '// Hook: libc:printf (on=leave, mode=skip)'
86 - - '0x00000208'
87 - f1 00 10 ea
88 - 'b #0x4003cc'
89 - '// Hook: libc:printf (on=leave, mode=skip)'
90 - - '0x004005d4'
91 - 00 30 a0 e3
92 - 'mov r3, #0'
93 - 'L23: `return EXIT_SUCCESS;`'
94 - - '0x004005d8'
95 - 03 00 a0 e1
96 - 'mov r0, r3'
97 - 'L24: `}`'
98 - - '0x004005dc'
99 - 04 d0 4b e2

100 - 'sub sp, fp, #4'
101 - 'L24: `}`'
102 - - '0x004005e0'
103 - 00 88 bd e8
104 - 'pop {fp, pc}'
105 - 'L24: `}`'
106

107 states:
108 entry:
109 addr: '0x00400588'
110 mems:
111 '0x004005e8': ['0x10']
112 '0x004005e9': ['0x01']
113 '0x004005ea': ['0x00']
114 '0x004005eb': ['0x00']
115 '0x00412190': ['0x41']
116 '0x00412191': ['0x42', $$]
117 '0x00412192': ['0x43', $$]
118 '0x00412193': ['0x44']
119 '0x00412194': ['0x45', $$]
120 '0x00412195': ['0x46']
121 '0x00412196': ['0x47']
122 '0x00412197': ['0x00']
123 '0xbefffb6c': ['0x00']

Appendix 54

124 '0xbefffb6d': ['0x00']
125 '0xbefffb6e': ['0x00']
126 '0xbefffb6f': ['0x00']
127 '0xbefffb70': ['0x00']
128 '0xbefffb71': ['0x00']
129 '0xbefffb72': ['0x00']
130 '0xbefffb73': ['0x00']
131 '0xbefffb74': ['0xa1']
132 '0xbefffb75': ['0xd5']
133 '0xbefffb76': ['0xee']
134 '0xbefffb77': ['0xb6']
135 regs:
136 r0: ['0x00412190']
137 r1: ['0x00412190']
138 r11: ['0xbefffb74']
139 r3: ['0x00412198']
140 sp: ['0xbefffb60']
141 z: ['0x00000000']
142 leave:
143 addr: '0xb6eed5a0'
144 mems:
145 '0x004005e8': ['0x10']
146 '0x004005e9': ['0x01']
147 '0x004005ea': ['0x00']
148 '0x004005eb': ['0x00']
149 '0x00412190': ['0x41']
150 '0x00412191': ['0x42']
151 '0x00412192': ['0x43']
152 '0x00412193': ['0x44']
153 '0x00412194': ['0x45']
154 '0x00412195': ['0x46']
155 '0x00412196': ['0x47']
156 '0x00412197': ['0x00']
157 '0xbefffb6c': ['0x90']
158 '0xbefffb6d': ['0x21']
159 '0xbefffb6e': ['0x41']
160 '0xbefffb6f': ['0x00']
161 '0xbefffb70': ['0x00']
162 '0xbefffb71': ['0x00']
163 '0xbefffb72': ['0x00']
164 '0xbefffb73': ['0x00']
165 '0xbefffb74': ['0xa1']
166 '0xbefffb75': ['0xd5']
167 '0xbefffb76': ['0xee']
168 '0xbefffb77': ['0xb6']
169 regs:
170 r0: ['0x00000000']
171 r1: ['0x00000000']
172 r11: ['0x00000000']
173 r3: ['0x00000000']
174 sp: ['0xbefffb78']
175 z: ['0x00000001']

LISTING A1: Example Traced YAML File

Appendix 55

3 Full Code Proposed to Load External Symbols

1 from ghidra.app.util import SymbolPath
2 from ghidra.app.util import NamespaceUtils
3

4 # Have to sub in your own address
5 # The address should be the address of the Thunk
6 externalLocation = getFunctionAt(toAddr("004341fe")) ⌋

.getThunkedFunction(True).getExternalLocation()↪→

7 externalSymbol = externalLocation.getSymbol()
8 program = externalSymbol.getProgram()
9

10 # Need to open the external program
11 # Adapted from https://github.com/saruman9/ghidra_scripts/blob/master ⌋

/FindExternalReferences.java↪→

12 libPath = currentProgram.getExternalManager() ⌋
.getExternalLibrary(externalLocation.getLibraryName()) ⌋
.getAssociatedProgramPath()

↪→

↪→

13 projectData = state.getProject().getProjectData()
14 libFile = projectData.getFile(libPath)
15 externalProgram = libFile.getImmutableDomainObject(libFile,

DomainFile.DEFAULT_VERSION, monitor)↪→

16

17

18 # Adapted from https://github.com/NationalSecurityAgency/ghidra/blob ⌋
/da94eb86bd2b89c8b0ab9bd89e9f0dc5a3157055/Ghidra/Features/Base/src ⌋
/main/java/ghidra/app/plugin/core/gotoquery/GoToHelper.java)

↪→

↪→

19 label = externalLocation.getOriginalImportedName()
20 symbolPath = SymbolPath(label)
21

22 for x in NamespaceUtils.getSymbols(symbolPath, externalProgram):
23 print(x)
24 if x.isExternalEntryPoint():
25 sym = x
26

27 loc = sym.getProgramLocation()
28 print(loc.getAddress())
29 fn = prog.getFunctionManager().getFunctionAt(loc.getAddress())

LISTING A2: Code Proposed in [72] To Load External Symbols

Appendix 56

4 Registers Identified by Ghidra

TABLE A1: Registers Identified by Ghidra in Its ProgramContext [64] With
Corresponding Non-Redundant Information

N
a
m
e

G
r
o
u
p

P
a
r
e
n
t
R
e
g
i
s
t
e
r

T
y
p
e
F
l
a
g
s

B
i
t
L
e
n
g
t
h

C
h
i
l
d
R
e
g
i
s
t
e
r

C
ou

nt

i
s
B
a
s
e
R
e
g
i
s
t
e
r

i
s
P
r
o
g
r
a
m
C
o
u
n
t
e
r

i
s
V
e
c
t
o
r
R
e
g
i
s
t
e
r

r0 0x00 0x20 0 x
r1 0x00 0x20 0 x
r2 0x00 0x20 0 x
r3 0x00 0x20 0 x
r4 0x00 0x20 0 x
r5 0x00 0x20 0 x
r6 0x00 0x20 0 x
r7 0x00 0x20 0 x
r8 0x00 0x20 0 x
r9 0x00 0x20 0 x
r10 0x00 0x20 0 x
r11 0x00 0x20 0 x
r12 0x00 0x20 0 x
sp 0x00 0x20 0 x
lr 0x00 0x20 0 x
pc 0x04 0x20 0 x x
NG 0x00 0x08 0 x
ZR 0x00 0x08 0 x
CY 0x00 0x08 0 x
OV 0x00 0x08 0 x
tmpNG 0x00 0x08 0 x
tmpZR 0x00 0x08 0 x
tmpCY 0x00 0x08 0 x
tmpOV 0x00 0x08 0 x
shift_carry 0x00 0x08 0 x
TB 0x00 0x08 0 x
Q 0x00 0x08 0 x
GE1 0x00 0x08 0 x
GE2 0x00 0x08 0 x
GE3 0x00 0x08 0 x
GE4 0x00 0x08 0 x
cpsr 0x00 0x20 0 x
spsr 0x00 0x20 0 x
mult_addr 0x00 0x20 0 x
r14_svc 0x00 0x20 0 x
r13_svc 0x00 0x20 0 x
spsr_svc 0x00 0x20 0 x
mult_dat8 mult_dat16 0x00 0x40 0

Appendix 57

N
a
m
e

G
r
o
u
p

P
a
r
e
n
t
R
e
g
i
s
t
e
r

T
y
p
e
F
l
a
g
s

B
i
t
L
e
n
g
t
h

C
h
i
l
d
R
e
g
i
s
t
e
r

C
ou

nt

i
s
B
a
s
e
R
e
g
i
s
t
e
r

i
s
P
r
o
g
r
a
m
C
o
u
n
t
e
r

i
s
V
e
c
t
o
r
R
e
g
i
s
t
e
r

mult_dat16 0x00 0x80 1 x
fpsr 0x00 0x20 0 x
ISAModeSwitch fpsid 0x00 0x08 0
fpsid 0x00 0x20 1 x
fpscr 0x00 0x20 0 x
fpexc 0x00 0x20 0 x
mvfr0 0x00 0x20 0 x
mvfr1 0x00 0x20 0 x
fp0 0x00 0x50 0 x
fp1 0x00 0x50 0 x
fp2 0x00 0x50 0 x
fp3 0x00 0x50 0 x
fp4 0x00 0x50 0 x
fp5 0x00 0x50 0 x
fp6 0x00 0x50 0 x
fp7 0x00 0x50 0 x
cr0 0x00 0x20 0 x
cr1 0x00 0x20 0 x
cr2 0x00 0x20 0 x
cr3 0x00 0x20 0 x
cr4 0x00 0x20 0 x
cr5 0x00 0x20 0 x
cr6 0x00 0x20 0 x
cr7 0x00 0x20 0 x
cr8 0x00 0x20 0 x
cr9 0x00 0x20 0 x
cr10 0x00 0x20 0 x
cr11 0x00 0x20 0 x
cr12 0x00 0x20 0 x
cr13 0x00 0x20 0 x
cr14 0x00 0x20 0 x
cr15 0x00 0x20 0 x
s0 d0 0x00 0x20 0
s1 d0 0x00 0x20 0
s2 d1 0x00 0x20 0
s3 d1 0x00 0x20 0
s4 d2 0x00 0x20 0
s5 d2 0x00 0x20 0
s6 d3 0x00 0x20 0
s7 d3 0x00 0x20 0
s8 d4 0x00 0x20 0
s9 d4 0x00 0x20 0

Appendix 58

N
a
m
e

G
r
o
u
p

P
a
r
e
n
t
R
e
g
i
s
t
e
r

T
y
p
e
F
l
a
g
s

B
i
t
L
e
n
g
t
h

C
h
i
l
d
R
e
g
i
s
t
e
r

C
ou

nt

i
s
B
a
s
e
R
e
g
i
s
t
e
r

i
s
P
r
o
g
r
a
m
C
o
u
n
t
e
r

i
s
V
e
c
t
o
r
R
e
g
i
s
t
e
r

s10 d5 0x00 0x20 0
s11 d5 0x00 0x20 0
s12 d6 0x00 0x20 0
s13 d6 0x00 0x20 0
s14 d7 0x00 0x20 0
s15 d7 0x00 0x20 0
s16 d8 0x00 0x20 0
s17 d8 0x00 0x20 0
s18 d9 0x00 0x20 0
s19 d9 0x00 0x20 0
s20 d10 0x00 0x20 0
s21 d10 0x00 0x20 0
s22 d11 0x00 0x20 0
s23 d11 0x00 0x20 0
s24 d12 0x00 0x20 0
s25 d12 0x00 0x20 0
s26 d13 0x00 0x20 0
s27 d13 0x00 0x20 0
s28 d14 0x00 0x20 0
s29 d14 0x00 0x20 0
s30 d15 0x00 0x20 0
s31 d15 0x00 0x20 0
d0 q0 0x00 0x40 2
d1 q0 0x00 0x40 2
d2 q1 0x00 0x40 2
d3 q1 0x00 0x40 2
d4 q2 0x00 0x40 2
d5 q2 0x00 0x40 2
d6 q3 0x00 0x40 2
d7 q3 0x00 0x40 2
d8 q4 0x00 0x40 2
d9 q4 0x00 0x40 2
d10 q5 0x00 0x40 2
d11 q5 0x00 0x40 2
d12 q6 0x00 0x40 2
d13 q6 0x00 0x40 2
d14 q7 0x00 0x40 2
d15 q7 0x00 0x40 2
d16 q8 0x00 0x40 0
d17 q8 0x00 0x40 0
d18 q9 0x00 0x40 0
d19 q9 0x00 0x40 0

Appendix 59

N
a
m
e

G
r
o
u
p

P
a
r
e
n
t
R
e
g
i
s
t
e
r

T
y
p
e
F
l
a
g
s

B
i
t
L
e
n
g
t
h

C
h
i
l
d
R
e
g
i
s
t
e
r

C
ou

nt

i
s
B
a
s
e
R
e
g
i
s
t
e
r

i
s
P
r
o
g
r
a
m
C
o
u
n
t
e
r

i
s
V
e
c
t
o
r
R
e
g
i
s
t
e
r

d20 q10 0x00 0x40 0
d21 q10 0x00 0x40 0
d22 q11 0x00 0x40 0
d23 q11 0x00 0x40 0
d24 q12 0x00 0x40 0
d25 q12 0x00 0x40 0
d26 q13 0x00 0x40 0
d27 q13 0x00 0x40 0
d28 q14 0x00 0x40 0
d29 q14 0x00 0x40 0
d30 q15 0x00 0x40 0
d31 q15 0x00 0x40 0
q0 NEON 0x80 0x80 2 x x
q1 NEON 0x80 0x80 2 x x
q2 NEON 0x80 0x80 2 x x
q3 NEON 0x80 0x80 2 x x
q4 NEON 0x80 0x80 2 x x
q5 NEON 0x80 0x80 2 x x
q6 NEON 0x80 0x80 2 x x
q7 NEON 0x80 0x80 2 x x
q8 NEON 0x80 0x80 2 x x
q9 NEON 0x80 0x80 2 x x
q10 NEON 0x80 0x80 2 x x
q11 NEON 0x80 0x80 2 x x
q12 NEON 0x80 0x80 2 x x
q13 NEON 0x80 0x80 2 x x
q14 NEON 0x80 0x80 2 x x
q15 NEON 0x80 0x80 2 x x
contextreg 0x08 0x40 19 x
TMode contextreg 0x08 0x01 0
LRset contextreg 0x48 0x01 0
REToverride contextreg 0x48 0x01 0
CALLoverride contextreg 0x48 0x01 0
TEEMode contextreg 0x08 0x01 0
condit contextreg 0x48 0x09 0
itmode contextreg 0x08 0x01 0
cond_full contextreg 0x08 0x04 0
cond_base contextreg 0x08 0x03 0
cond_true contextreg 0x08 0x01 0
cond_shft contextreg 0x08 0x05 0
cond_mask contextreg 0x08 0x04 0
counter contextreg 0x08 0x05 0

Appendix 60

N
a
m
e

G
r
o
u
p

P
a
r
e
n
t
R
e
g
i
s
t
e
r

T
y
p
e
F
l
a
g
s

B
i
t
L
e
n
g
t
h

C
h
i
l
d
R
e
g
i
s
t
e
r

C
ou

nt

i
s
B
a
s
e
R
e
g
i
s
t
e
r

i
s
P
r
o
g
r
a
m
C
o
u
n
t
e
r

i
s
V
e
c
t
o
r
R
e
g
i
s
t
e
r

regNum contextreg 0x08 0x05 0
counter2 contextreg 0x08 0x03 0
reg2Num contextreg 0x08 0x05 0
regInc contextreg 0x08 0x02 0
ARMcond contextreg 0x08 0x01 0
ARMcondCk contextreg 0x08 0x01 0

Appendix 61

5 Initial Thesis Description

5.1 Titel

Ghidra-Erweiterung für das Morion Symbolic Execution Tool

5.2 Beschreibung

Im Rahmen seines Forschungsprogrammes im Bereich Vulnerability Research, er-
probt der Cyber-Defense Campus von armasuisse W+T die Anwendbarkeit von
Symbolic Execution auf echte, sogenannte real-world, Binaries. Um an den momen-
tan existierenden praktischen Limitationen zu forschen, wird an der Entwicklung
eines Proof-of-Concept (PoC) Tool namens Morion gearbeitet, welches im Rahmen
dieses Projektes erweitert werden soll. Morion bietet die Funktionalität, verschie-
dene auf Symbolic Execution basierende Analysen auf selektiven Pfaden innerhalb
eines echten ARMv7 Binaries auszuführen.

Im Rahmen dieses Projektes sollen folgende Aufgabestellungen bearbeitet werden:

Morion Ghidra-Erweiterung (Hauptaufgabe)

• Durchführen einer Analyse existierender Symbolic Execution Erweiterung für
populäre Reverse Engineering Frameworks wie Ghidra, IDA Pro oder Binary
Ninja (Literaturstudie)

• Einrichten einer Test-/Entwicklungsumgebung (Ghidra, Morion, QEMU VM)

• Einarbeitung in die Kernfunktionalitäten von Morion, den grundlegenden Kon-
zepten von Reverse Engineering und (Binary) Symbolic Execution, sowie der
zu verwendenden Tools

• Ausarbeitung und Entwicklung einer Erweiterung für das Reverse Enginee-
ring Framework Ghidra, welches als Frontend für Morion agieren soll

• Verwendung der GDB-Debugging Integration in Ghidra um mit Hilfe von Mo-
rion konkrete Execution Traces von Ziel-Binaries zu sammeln (Tracing)

• Verwendung der Traces zur Ausführung verschiedener von Morion imple-
mentierter Symbolic Execution Analysen, sowie Integration/Darstellung rele-
vanter Resultate in Ghidra Morion Pfad-Analyse Modul (Optionale Aufgabe)

• Ausarbeitung einer auf Symbolic Exeuction basierenden Analyse, welche ei-
ne mögliche Lösung zum Erreichen einer Ziel-Adresse, ausgehend von einer
vordefinierten Start-Adresse, zurückgibt

• Möglichkeit kontrollierbare Bereiche als symbolisch zu markieren, basierend
auf welchen das Analyse-Modul eine mögliche Lösung berechnet

• Verwendung von Ghidra zum Erstellen sogenannter Control Flow Graphs (CFGs),
welche zum Auffinden möglicher Pfade dienen

Die Abgabe der Projekt-Resultate soll anhand des entwickelten Source Codes erfol-
gen, sowie in Form eines zugehörigen technischen Berichtes, welcher die Erarbeite-
ten Erkenntnisse und Dokumentation zusammenfasst.

Appendix 62

Referenzen

• "Triton: A Dynamic Binary Analysis Library", https://triton-library.github.io/

• "Ghidra: Software Reverse Engineering Toolsuite", https://ghidra-sre.org/

• "Practical Binary Analysis: Build Your Own Linux Tools for Binary Instrumen-
tation, Analysis, and Disassembly", D. Andriesse, 2019

• "Ponce: IDA Pro Plugin based on Triton", https://github.com/illera88/Ponce

• "AngryGhidra: Ghidra Plugin based on Angr", https://github.com/Nalen98/
AngryGhidra

• "SENinja: A symbolic execution plugin for Binary Ninja", L. Borzacchiello et
al., 2022

5.3 Voraussetzungen

Sehr gute Kenntnisse IT Sicherheit, Linux, Qemu, GDB, Programmierung incl. Low-
Level.

	Introduction
	Motivation and Project Background
	Fundamentals
	Example Problem
	Thesis Outline

	Theoretical Principles
	Software Reverse Engineering
	Binary Analysis
	Static Binary Analysis
	Dynamic Binary Analysis
	Hybrid Binary Analysis

	Symbolic Execution
	From Concrete to Symbolic Execution
	Symbolic Execution Example
	Variants of Symbolic Execution
	Symbolic Execution and Taint Analysis

	State of the Art
	Introduction to Symbolic Execution Engines
	angr
	Triton
	Conclusion

	Symbolic Execution Graphical User Interfaces
	AngryGhidra
	angr Management
	Ponce
	Manticore User Interface

	Concept and Approach
	Morion
	Workflow
	Interface

	Parts of the Plugin
	Creating an Init YAML File
	Analysing a Traced YAML File

	Architecture and Implementation
	Extending Ghidra
	GhidraDev
	Ghidra Scripts
	Ghidra Module Projects
	Ghidra's Program API
	Context Menus in Ghidra

	Architecture and Technology
	Java/Swing
	Model-View-Controller Pattern
	Observer Pattern
	Graphical User Interface Design
	Python Integration

	Results
	Created Documentation
	Creating an Init YAML File
	Adding Hooks
	Adding Memory
	Adding Registers
	Saving and Importing Init Trace Files

	Tracing
	Analysing a Trace
	Differences Between Entry and Leave States
	Marking Visited Instructions
	Using Morion's Analysis Modules

	Discussion and Outlook
	Created Documentation
	Improvements in the Workflow of an Analyst
	Create Init YAML
	Tracing
	Analyse Traced YAML

	Future Work
	Hooking Functions in Sections Other Than .text
	Automatic Library Detection
	Automatic Register Detection
	Further Ideas

	Indices
	Bibliography
	List of Figures
	List of Tables
	List of Listings

	Appendix
	Installation of AngryGhidra
	Full Example Traced YAML File
	Full Code Proposed to Load External Symbols
	Registers Identified by Ghidra
	Initial Thesis Description
	Titel
	Beschreibung
	Voraussetzungen

